1588
IRUS TotalDownloads
Altmetric
A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
File | Description | Size | Format | |
---|---|---|---|---|
andersen submitted ammonia protocol.pdf | Accepted version | 2.2 MB | Adobe PDF | View/Open |
Title: | A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements |
Authors: | Andersen, SZ Colic, V Yang, S Schwalbe, JA Nielander, AC McEnaney, JM Enemark-Rasmussen, K Baker, JG Singh, AR Rohr, BA Statt, MJ Blair, SJ Mezzavilla, S Kibsgaard, J Vesborg, PCK Cargnello, M Bent, SF Jaramillo, TF Stephens, IEL Norskov, JK Chorkendorff, I |
Item Type: | Journal Article |
Abstract: | The electrochemical synthesis of ammonia from nitrogen under mild conditions using renewable electricity is an attractive alternative to the energy-intensive Haber–Bosch process, which dominates industrial ammonia production. However, there are considerable scientific and technical challenges facing the electrochemical alternative, and most experimental studies reported so far have achieved only low selectivities and conversions. The amount of ammonia produced is usually so small that it cannot be firmly attributed to electrochemical nitrogen fixation rather than contamination from ammonia that is either present in air, human breath or ion-conducting membranes, or generated from labile nitrogen-containing compounds (for example, nitrates, amines, nitrites and nitrogen oxides) that are typically present in the nitrogen gas stream, in the atmosphere or even in the catalyst itself. Although these sources of experimental artefacts are beginning to be recognized and managed concerted efforts to develop effective electrochemical nitrogen reduction processes would benefit from benchmarking protocols for the reaction and from a standardized set of control experiments designed to identify and then eliminate or quantify the sources of contamination. Here we propose a rigorous procedure using 15N2 that enables us to reliably detect and quantify the electrochemical reduction of nitrogen to ammonia. We demonstrate experimentally the importance of various sources of contamination, and show how to remove labile nitrogen-containing compounds from the nitrogen gas as well as how to perform quantitative isotope measurements with cycling of 15N2 gas to reduce both contamination and the cost of isotope measurements. Following this protocol, we find that no ammonia is produced when using the most promising pure-metal catalysts for this reaction in aqueous media, and we successfully confirm and quantify ammonia synthesis using lithium electrodeposition in tetrahydrofuran13. The use of this rigorous protocol should help to prevent false positives from appearing in the literature, thus enabling the field to focus on viable pathways towards the practical electrochemical reduction of nitrogen to ammonia. |
Issue Date: | 27-Jun-2019 |
Date of Acceptance: | 9-May-2019 |
URI: | http://hdl.handle.net/10044/1/72812 |
DOI: | https://doi.org/10.1038/s41586-019-1260-x |
ISSN: | 0028-0836 |
Publisher: | Nature Research |
Start Page: | 504 |
End Page: | 508 |
Journal / Book Title: | Nature |
Volume: | 570 |
Issue: | 7762 |
Copyright Statement: | © The Author(s), under exclusive licence to Springer Nature Limited 2019. The final publication is available at Springer via https://doi.org/10.1038/s41586-019-1260-x |
Keywords: | Science & Technology Multidisciplinary Sciences Science & Technology - Other Topics ATMOSPHERIC-PRESSURE AMBIENT-TEMPERATURE COMPOSITE ELECTROLYTE NITROGEN-FIXATION REDUCTION WATER N-2 GAS DINITROGEN ELECTROSYNTHESIS Science & Technology Multidisciplinary Sciences Science & Technology - Other Topics ATMOSPHERIC-PRESSURE AMBIENT-TEMPERATURE COMPOSITE ELECTROLYTE NITROGEN-FIXATION REDUCTION WATER N-2 GAS DINITROGEN ELECTROSYNTHESIS MD Multidisciplinary General Science & Technology |
Publication Status: | Published |
Online Publication Date: | 2019-05-22 |
Appears in Collections: | Materials |