11
IRUS Total
Downloads
  Altmetric

Bound on the number of negative eigenvalues of two-dimensional Schrödinger operators on domains

File Description SizeFormat 
solomyak1.pdfAccepted version328.39 kBAdobe PDFView/Open
Title: Bound on the number of negative eigenvalues of two-dimensional Schrödinger operators on domains
Authors: Frank, RL
Laptev, A
Item Type: Journal Article
Abstract: A fundamental result of Solomyak says that the number of negative eigenvalues of a Schrödinger operator on a two-dimensional domain is bounded from above by a constant times a certain Orlicz norm of the potential. Here it is shown that in the case of Dirichlet boundary conditions the constant in this bound can be chosen independently of the domain.
Issue Date: 1-Jan-2019
Date of Acceptance: 1-Apr-2019
URI: http://hdl.handle.net/10044/1/70133
DOI: https://dx.doi.org/10.1090/spmj/1559
ISSN: 1547-7371
Publisher: American Mathematical Society
Start Page: 573
End Page: 589
Journal / Book Title: St. Petersburg Mathematical Journal
Volume: 30
Issue: 3
Copyright Statement: © 2019 American Mathematical Society.
Keywords: Science & Technology
Physical Sciences
Mathematics
Schrodinger operator
Dirichlet Laplacian
Neumann Laplacian
Trudinger inequality
DISCRETE SPECTRUM
STATES
Science & Technology
Physical Sciences
Mathematics
Schrodinger operator
Dirichlet Laplacian
Neumann Laplacian
Trudinger inequality
DISCRETE SPECTRUM
STATES
0101 Pure Mathematics
Publication Status: Published
Online Publication Date: 2019-04-12
Appears in Collections:Pure Mathematics
Faculty of Natural Sciences
Mathematics