64
IRUS TotalDownloads
Altmetric
A methodology to relate black carbon particle number and mass emissions
File | Description | Size | Format | |
---|---|---|---|---|
Revised Manuscript - Final.pdf | Accepted version | 918.37 kB | Adobe PDF | View/Open |
Revised Supporting Information - Final.pdf | Supporting information | 2.1 MB | Adobe PDF | View/Open |
Title: | A methodology to relate black carbon particle number and mass emissions |
Authors: | Teoh, R Stettler, MEJ Majumdar, A Schumann, U Graves, B Boies, AM |
Item Type: | Journal Article |
Abstract: | Black carbon (BC) particle number (PN) emissions from various sources contribute to the deterioration of air quality, adverse health effects, and anthropogenic climate change. This paper critically reviews different fractal aggregate theories to develop a new methodology that relates BC PN and mass concentrations (or emissions factors). The new methodology, named as the fractal aggregate (FA) model is validated with measurements from three different BC emission sources: an internal combustion engine, a soot generator, and two aircraft gas turbine engines at ground and cruise conditions. Validation results of the FA model show that R 2 values range from 0.44 to 0.95, while the Normalised Mean Bias is between −27.7% and +26.6%. The model estimates for aircraft gas turbines represent a significant improvement compared to previous methodologies used to estimate aviation BC PN emissions, which relied on simplified assumptions. Uncertainty and sensitivity analyses show that the FA model estimates have an asymmetrical uncertainty bound (−54%,+103%) at a 95% confidence interval for aircraft gas turbine engines and are most sensitive to uncertainties in the geometric standard deviation of the BC particle size distribution. Given the improved performance in estimating BC PN emissions from various sources, we recommend the implementation of the FA model in future health and climate assessments, where the impacts of PN are significant. |
Issue Date: | 1-Jun-2019 |
Date of Acceptance: | 19-Mar-2019 |
URI: | http://hdl.handle.net/10044/1/69836 |
DOI: | 10.1016/j.jaerosci.2019.03.006 |
ISSN: | 0021-8502 |
Publisher: | Elsevier |
Start Page: | 44 |
End Page: | 59 |
Journal / Book Title: | Journal of Aerosol Science |
Volume: | 132 |
Issue: | 1 |
Copyright Statement: | © 2019 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Sponsor/Funder: | Lloyd's Register Foundation |
Funder's Grant Number: | GA\100086 |
Keywords: | Science & Technology Technology Life Sciences & Biomedicine Physical Sciences Engineering, Chemical Engineering, Mechanical Environmental Sciences Meteorology & Atmospheric Sciences Engineering Environmental Sciences & Ecology Black carbon Particle number Particle mass Fractal aggregates Combustion emissions PARTICULATE MATTER EMISSIONS EFFECTIVE DENSITY AIR-POLLUTION AIRCRAFT ENGINES DIESEL-ENGINES GAS-TURBINE MOBILITY SOOT SIZE AEROSOL Meteorology & Atmospheric Sciences 0306 Physical Chemistry (incl. Structural) 0401 Atmospheric Sciences 0904 Chemical Engineering |
Publication Status: | Published |
Online Publication Date: | 2019-03-22 |
Appears in Collections: | Civil and Environmental Engineering Faculty of Engineering |