IRUS Total

Integration and visualisation of clinical-omics datasets for medical knowledge discovery

File Description SizeFormat 
Homola-D-2018-PhD-ThesisThesis9.19 MBAdobe PDFView/Open
Title: Integration and visualisation of clinical-omics datasets for medical knowledge discovery
Authors: Homola, Daniel
Item Type: Thesis or dissertation
Abstract: In recent decades, the rise of various omics fields has flooded life sciences with unprecedented amounts of high-throughput data, which have transformed the way biomedical research is conducted. This trend will only intensify in the coming decades, as the cost of data acquisition will continue to decrease. Therefore, there is a pressing need to find novel ways to turn this ocean of raw data into waves of information and finally distil those into drops of translational medical knowledge. This is particularly challenging because of the incredible richness of these datasets, the humbling complexity of biological systems and the growing abundance of clinical metadata, which makes the integration of disparate data sources even more difficult. Data integration has proven to be a promising avenue for knowledge discovery in biomedical research. Multi-omics studies allow us to examine a biological problem through different lenses using more than one analytical platform. These studies not only present tremendous opportunities for the deep and systematic understanding of health and disease, but they also pose new statistical and computational challenges. The work presented in this thesis aims to alleviate this problem with a novel pipeline for omics data integration. Modern omics datasets are extremely feature rich and in multi-omics studies this complexity is compounded by a second or even third dataset. However, many of these features might be completely irrelevant to the studied biological problem or redundant in the context of others. Therefore, in this thesis, clinical metadata driven feature selection is proposed as a viable option for narrowing down the focus of analyses in biomedical research. Our visual cortex has been fine-tuned through millions of years to become an outstanding pattern recognition machine. To leverage this incredible resource of the human brain, we need to develop advanced visualisation software that enables researchers to explore these vast biological datasets through illuminating charts and interactivity. Accordingly, a substantial portion of this PhD was dedicated to implementing truly novel visualisation methods for multi-omics studies.
Content Version: Open Access
Issue Date: Sep-2017
Date Awarded: Mar-2018
URI: http://hdl.handle.net/10044/1/67647
DOI: https://doi.org/10.25560/67647
Supervisor: Holmes, Elaine
Nicholson, Jeremy
Guo, Yike
Sponsor/Funder: Wellcome Trust (London, England)
Department: Department of Surgery & Cancer
Publisher: Imperial College London
Qualification Level: Doctoral
Qualification Name: Doctor of Philosophy (PhD)
Appears in Collections:Department of Surgery and Cancer PhD Theses

Unless otherwise indicated, items in Spiral are protected by copyright and are licensed under a Creative Commons Attribution NonCommercial NoDerivatives License.

Creative Commons