26
IRUS TotalDownloads
Altmetric
Fluorescence-lifetime imaging and super-resolution microscopies shed light on the directed- and self-assembly of functional porphyrins onto carbon nanotubes and flat surfaces
File | Description | Size | Format | |
---|---|---|---|---|
Fluorescence-Lifetime Imaging and Super-Resolution Microscopies Shed Light on the Directed- and Self-Assembly of Functional Porphyrins onto Carbon Nanotubes and Flat Surfaces.pdf | Published version | 6.28 MB | Adobe PDF | View/Open |
Title: | Fluorescence-lifetime imaging and super-resolution microscopies shed light on the directed- and self-assembly of functional porphyrins onto carbon nanotubes and flat surfaces |
Authors: | Mao, B Calatayud, DG Mirabello, V Kuganathan, N Ge, H Jacobs, RMJ Shepherd, AM Ribeiro Martins, JA De la Serna, JB Hodges, BJ Botchway, SW Pascu, SI |
Item Type: | Journal Article |
Abstract: | Functional porphyrins have attracted intense attention due to their remarkably high extinction coefficients in the visible region and potential for optical and energy‐related applications. Two new routes to functionalised SWNTs have been established using a bulky ZnII‐porphyrin featuring thiolate groups at the periphery. We probed the optical properties of this zinc(II)‐substituted, bulky aryl porphyrin and those of the corresponding new nano‐composites with single walled carbon nanotube (SWNTs) and coronene, as a model for graphene. We report hereby on: i) the supramolecular interactions between the pristine SWNTs and ZnII‐porphyrin by virtue of π–π stacking, and ii) a novel covalent binding strategy based on the Bingel reaction. The functional porphyrins used acted as dispersing agent for the SWNTs and the resulting nanohybrids showed improved dispersibility in common organic solvents. The synthesized hybrid materials were probed by various characterisation techniques, leading to the prediction that supramolecular polymerisation and host–guest functionalities control the fluorescence emission intensity and fluorescence lifetime properties. For the first time, XPS studies highlighted the differences in covalent versus non‐covalent attachments of functional metalloporphyrins to SWNTs. Gas‐phase DFT calculations indicated that the ZnII‐porphyrin interacts non‐covalently with SWNTs to form a donor–acceptor complex. The covalent attachment of the porphyrin chromophore to the surface of SWNTs affects the absorption and emission properties of the hybrid system to a greater extent than in the case of the supramolecular functionalisation of the SWNTs. This represents a synthetic challenge as well as an opportunity in the design of functional nanohybrids for future sensing and optoelectronic applications. |
Issue Date: | 21-Jul-2017 |
Date of Acceptance: | 25-Apr-2017 |
URI: | http://hdl.handle.net/10044/1/67545 |
DOI: | https://dx.doi.org/10.1002/chem.201605232 |
ISSN: | 0947-6539 |
Publisher: | Wiley |
Start Page: | 9772 |
End Page: | 9789 |
Journal / Book Title: | Chemistry - A European Journal |
Volume: | 23 |
Issue: | 41 |
Copyright Statement: | © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | Science & Technology Physical Sciences Chemistry, Multidisciplinary Chemistry carbon nanotubes nanostructures optically active materials self-assembly super-resolution STED imaging PHOTOINDUCED ELECTRON-TRANSFER DONOR-ACCEPTOR NANOHYBRIDS ZINC PORPHYRIN SOLAR-CELLS NONCOVALENT FUNCTIONALIZATION SIDEWALL FUNCTIONALIZATION OPTICAL-PROPERTIES METAL-COMPLEXES BINGEL REACTION ENERGY-TRANSFER 03 Chemical Sciences General Chemistry |
Publication Status: | Published |
Online Publication Date: | 2017-04-25 |
Appears in Collections: | Materials National Heart and Lung Institute Faculty of Engineering |