55
IRUS TotalDownloads
Altmetric
Assessing availability and greenhouse gas emissions of lignocellulosic biomass feedstock supply - case study for a catchment in England
File | Description | Size | Format | |
---|---|---|---|---|
Ni et al_Biofpr_author_accepted_nov18.pdf | Accepted version | 1.69 MB | Adobe PDF | View/Open |
Title: | Assessing availability and greenhouse gas emissions of lignocellulosic biomass feedstock supply - case study for a catchment in England |
Authors: | Ni, Y Mwabonje, ON Richter, GM Qi, A Yeung, K Patel, M Woods, J |
Item Type: | Journal Article |
Abstract: | Feedstocks from lignocellulosic biomass (LCB) include crop residues and dedicated perennial biomass crops. The latter are often considered superior in terms of climate change mitigation potential. Uncertainty remains over their availability as feedstocks for biomass provision and the net greenhouse gas emissions (GHG) during crop production. Our objective was to assess the optimal land allocation to wheat and Miscanthus in a specific case study located in England, to increase biomass availability, improve the carbon balance (and reduce the consequent GHG emissions), and minimally constrain grain production losses from wheat. Using soil and climate variables for a catchment in east England, biomass yields and direct nitrogen emissions were simulated with validated process‐based models. A ‘Field to up‐stream factory gate’ life‐cycle assessment was conducted to estimate indirect management‐related GHG emissions. Results show that feedstock supply from wheat straw can be supplemented beneficially with LCB from Miscanthus grown on selected low‐quality soils. In our study, 8% of the less productive arable land area was dedicated to Miscanthus, increasing total LCB provision by about 150%, with a 52% reduction in GHG emission per ton LCB delivered and only a minor effect on wheat grain production (−3%). In conclusion, even without considering the likely carbon sequestration in impoverished soils, agriculture should embrace the opportunities to provide the bioeconomy with LCB from dedicated, perennial crops. |
Issue Date: | 1-May-2019 |
Date of Acceptance: | 19-Nov-2018 |
URI: | http://hdl.handle.net/10044/1/67182 |
DOI: | https://dx.doi.org/10.1002/bbb.1966 |
ISSN: | 1932-104X |
Publisher: | Wiley |
Start Page: | 568 |
End Page: | 581 |
Journal / Book Title: | Biofuels, Bioproducts and Biorefining |
Volume: | 13 |
Issue: | 3 |
Copyright Statement: | © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd. This is the accepted version of the following article: Ni, Y. , Mwabonje, O. N., Richter, G. M., Qi, A. , Yeung, K. , Patel, M. and Woods, J. (2019), Assessing availability and greenhouse gas emissions of lignocellulosic biomass feedstock supply – case study for a catchment in England. Biofuels, Bioprod. Bioref., which has been published in final form at https://dx.doi.org/10.1002/bbb.1966 |
Sponsor/Funder: | European Institute of Innovation and Technology - EIT |
Funder's Grant Number: | KIC ADMIT Biosuccinnovate |
Keywords: | Science & Technology Life Sciences & Biomedicine Technology Biotechnology & Applied Microbiology Energy & Fuels lignocellulosic biomass greenhouse gases (GHG) Miscanthus wheat straw feedstock supply STAMINA DNDC NITROUS-OXIDE EMISSIONS ROW-CROP FIELD PERENNIAL GRASSES BIOENERGY CROPS CARBON BALANCE CLIMATE-CHANGE SOIL CARBON ENERGY CROP MISCANTHUS YIELD Biotechnology 09 Engineering 10 Technology |
Publication Status: | Published |
Online Publication Date: | 2019-01-09 |
Appears in Collections: | Centre for Environmental Policy Faculty of Natural Sciences |