28
IRUS Total
Downloads
  Altmetric

Converse theorems and the local Langlands correspondence in families

File Description SizeFormat 
Helm-Moss2018_Article_ConverseTheoremsAndTheLocalLan.pdfPublished version480.54 kBAdobe PDFView/Open
Title: Converse theorems and the local Langlands correspondence in families
Authors: Helm, DF
Moss, G
Item Type: Journal Article
Abstract: We prove a descent criterion for certain families of smooth representations of GLn(F) (F a p-adic field) in terms of the γ-factors of pairs constructed in Moss (Int Math Res Not 2016(16):4903–4936, 2016). We then use this descent criterion, together with a theory of γ-factors for families of representations of the Weil group WF (Helm and Moss in Deligne–Langlands gamma factors in families, arXiv:1510.08743v3, 2015), to prove a series of conjectures, due to the first author, that give a complete description of the center of the category of smooth W(k)[GLn(F)]-modules (the so-called “integral Bernstein center”) in terms of Galois theory and the local Langlands correspondence. An immediate consequence is the conjectural “local Langlands correspondence in families” of Emerton and Helm (Ann Sci Éc Norm Supér (4) 47(4):655–722, 2014).
Issue Date: 1-Nov-2018
Date of Acceptance: 23-Jul-2018
URI: http://hdl.handle.net/10044/1/64383
DOI: 10.1007/s00222-018-0816-y
ISSN: 0020-9910
Publisher: Springer Verlag
Start Page: 999
End Page: 1022
Journal / Book Title: Inventiones Mathematicae
Volume: 214
Issue: 2
Copyright Statement: © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Sponsor/Funder: Engineering & Physical Science Research Council (EPSRC)
Funder's Grant Number: EP/M029719/1
Keywords: Science & Technology
Physical Sciences
Mathematics
11F33
11F70
22E50
GL(N)
11F33
11F70
22E50
0101 Pure Mathematics
General Mathematics
Publication Status: Published
Open Access location: http://links.springernature.com/f/a/6XoV5MrSYSlijDQfgyF8BA~~/AABE5gA~/RgRdeCIbP0QwaHR0cDovL3d3dy5zcHJpbmdlci5jb20vLS8yL0FXWEZsQXRPMDBhN21nTVgxSTl4VwNzcGNCCgAAm-6WW0hUFkJSFWQuaGVsbUBpbXBlcmlhbC5hYy51a1gEAAAG5w~~
Online Publication Date: 2018-09-08
Appears in Collections:Pure Mathematics
Faculty of Natural Sciences
Mathematics