19
IRUS Total
Downloads
  Altmetric

A synchrotron X-ray diffraction study of non-proportional strain-path effects.

File Description SizeFormat 
1-s2.0-S1359645416308734-main.pdfPublished version5.87 MBAdobe PDFView/Open
Title: A synchrotron X-ray diffraction study of non-proportional strain-path effects.
Authors: Collins, DM
Erinosho, T
Dunne, FPE
Todd, RI
Connolley, T
Mostafavi, M
Kupfer, H
Wilkinson, AJ
Item Type: Journal Article
Abstract: Common alloys used in sheet form can display a significant ductility benefit when they are subjected to certain multiaxial strain paths. This effect has been studied here for a polycrystalline ferritic steel using a combination of Nakajima bulge testing, X-ray diffraction during biaxial testing of cruciform samples and crystal plasticity finite element (CPFE) modelling. Greatest gains in strain to failure were found when subjecting sheets to uniaxial loading followed by balanced biaxial deformation, resulting in a total deformation close to plane-strain. A combined strain of approximately double that of proportional loading was achieved. The evolution of macrostrain, microstrain and texture during non-proportional loading were evaluated by in-situ high energy synchrotron diffraction. The results have demonstrated that the inhomogeneous strain accumulation from non-proportional deformation is strongly dependent on texture and the applied strain-ratio of the first deformation pass. Experimental diffraction evidence is supported by results produced by a novel method of CPFE-derived diffraction simulation. Using constitutive laws selected on the basis of good agreement with measured lattice strain development, the CPFE model demonstrated the capability to replicate ductility gains measured experimentally.
Issue Date: 14-Nov-2016
Date of Acceptance: 5-Nov-2016
URI: http://hdl.handle.net/10044/1/61540
DOI: https://dx.doi.org/10.1016/j.actamat.2016.11.011
ISSN: 1359-6454
Publisher: Elsevier
Start Page: 290
End Page: 304
Journal / Book Title: Acta Materialia
Volume: 124
Copyright Statement: © 2016 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Keywords: Science & Technology
Technology
Materials Science, Multidisciplinary
Metallurgy & Metallurgical Engineering
Materials Science
Synchrotron radiation
X-ray diffraction (XRD)
Lattice strain
Texture
Crystal plasticity
INTERSTITIAL-FREE STEEL
FORMING LIMIT DIAGRAMS
STAINLESS-STEEL
MILD-STEEL
BIAXIAL DEFORMATION
TEXTURE EVOLUTION
BEHAVIOR
METALS
RESPONSES
CURVES
0912 Materials Engineering
0913 Mechanical Engineering
Materials
Publication Status: Published
Appears in Collections:Materials
Faculty of Engineering