54
IRUS Total
Downloads
  Altmetric

Benchmarking the screen-grid field effect transistor (SGrFET) for digital applications

File Description SizeFormat 
Shadrokh-Y-2010-PhD-Thesis.pdf8.6 MBAdobe PDFView/Open
Title: Benchmarking the screen-grid field effect transistor (SGrFET) for digital applications
Authors: Shadrokh, Yasaman
Item Type: Thesis or dissertation
Abstract: Continuous scaling of CMOS technology has now reached a state of evolution, therefore, novel device structures and new materials have been proposed for this purpose. The Screen- Grid field Effect Transistor is introduced as a as a novel device structure that takes advantage of several innovative aspects of the FinFET while introducing new geometrical feature to improve a FET device performance. The idea is to design a FET which is as small as possible without down-scaling issues, at the same time satisfying optimum device performance for both analogue and digital applications. The analogue operation of the SGrFET shows some promising results which make it interesting to continue the investigation on SGrFET for digital applications. The SGrFET addresses some of the concerns of scaled CMOS such as Drain Induce Barrier Lowering and sub-threshold slope, by offering the superior short channel control. In this work in order to evaluate SGrFET performance, the proposed device compared to the classical MOSFET and provides comprehensive benchmarking with finFETs. Both AC and DC simulations are presented using TaurusTM and MediciTM simulators which are commercially available via Synopsis. Initial investigation on the novel device with the single gate structure is carried out. The multi-geometrical characteristic of the proposed device is used to reduce parasitic capacitance and increase ION/IOFF ratio to improve device performance in terms of switching characteristic in different circuit structures. Using TaurusTM AC simulation, a small signal circuit is introduced for SGrFET and evaluated using both extracted small signal elements from TaurusTM and Y-parameter extraction. The SGrFET allows for the unique behavioural characteristics of an independent-gate device. Different configurations of double-gate device are introduced and benchmark against the finFET serving as a double gate device. Five different logic circuits, the complementary and N-inverter, the NOR, NAND and XOR, and controllable Current Mirror circuits are simulated with finFET and SGrFET and their performance compared. Some digital key merits are extracted for both finFET and SGrFET such as power dissipation, noise margin and switching speed to compare the devices under the investigation performance against each other. It is shown that using multi-geometrical feature in SGrFET together with its multi-gate operation can greatly decrease the number of device needed for the logic function without speed degradation and it can be used as a potential candidate in mix-circuit configuration as a multi-gate device. The initial fabrication steps of the novel device explained together with some in-house fabrication process using E-Beam lithography. The fabricated SGrFET is characterised via electrical measurements and used in a circuit configuration.
Issue Date: 2010
Date Awarded: Oct-2010
URI: http://hdl.handle.net/10044/1/6042
DOI: https://doi.org/10.25560/6042
Supervisor: Fobelets, Kristel
Sponsor/Funder: EPSRC ; Schlumberger Foundation Women in Science and Engineering Award
Author: Shadrokh, Yasaman
Department: Electrical and Electronic Engineering
Publisher: Imperial College London
Qualification Level: Doctoral
Qualification Name: Doctor of Philosophy (PhD)
Appears in Collections:Electrical and Electronic Engineering PhD theses



Unless otherwise indicated, items in Spiral are protected by copyright and are licensed under a Creative Commons Attribution NonCommercial NoDerivatives License.

Creative Commons