12
IRUS TotalDownloads
Altmetric
Crystallisation in basaltic magmas revealed via in situ 4D synchrotron X-ray microtomography
File | Description | Size | Format | |
---|---|---|---|---|
s41598-018-26644-6.pdf | Published version | 3.22 MB | Adobe PDF | View/Open |
Title: | Crystallisation in basaltic magmas revealed via in situ 4D synchrotron X-ray microtomography |
Authors: | Polacci, M Arzilli, F La Spina, G Le Gall, N Cai, B Hartley, ME Di Genova, D Vo, NT Nonni, S Atwood, RC Llewellin, EW Lee, PD Burton, MR |
Item Type: | Journal Article |
Abstract: | Magma crystallisation is a fundamental process driving eruptions and controlling the style of volcanic activity. Crystal nucleation delay, heterogeneous and homogeneous nucleation and crystal growth are all time-dependent processes, however, there is a paucity of real-time experimental data on crystal nucleation and growth kinetics, particularly at the beginning of crystallisation when conditions are far from equilibrium. Here, we reveal the first in situ 3D time-dependent observations of crystal nucleation and growth kinetics in a natural magma, reproducing the crystallisation occurring in real-time during a lava flow, by combining a bespoke high-temperature environmental cell with fast synchrotron X-ray microtomography. We find that both crystal nucleation and growth occur in pulses, with the first crystallisation wave producing a relatively low volume fraction of crystals and hence negligible influence on magma viscosity. This result explains why some lava flows cover kilometres in a few hours from eruption inception, highlighting the hazard posed by fast-moving lava flows. We use our observations to quantify disequilibrium crystallisation in basaltic magmas using an empirical model. Our results demonstrate the potential of in situ 3D time-dependent experiments and have fundamental implications for the rheological evolution of basaltic lava flows, aiding flow modelling, eruption forecasting and hazard management. |
Issue Date: | 30-May-2018 |
Date of Acceptance: | 14-May-2018 |
URI: | http://hdl.handle.net/10044/1/60294 |
DOI: | https://dx.doi.org/10.1038/s41598-018-26644-6 |
ISSN: | 2045-2322 |
Publisher: | Nature Publishing Group |
Start Page: | 8377 |
End Page: | 8377 |
Journal / Book Title: | Scientific Reports |
Volume: | 8 |
Issue: | 1 |
Copyright Statement: | © The Author(s) 2018. his article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre- ative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not per- mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
Publication Status: | Published |
Conference Place: | England |
Appears in Collections: | Materials Faculty of Engineering |