IRUS Total

Modelling and simulation of flexible instruments for minimally invasive surgical training in virtual reality

File Description SizeFormat 
Korzeniowski-P-2016-PhD-Thesis.pdfThesis11.47 MBAdobe PDFView/Open
Title: Modelling and simulation of flexible instruments for minimally invasive surgical training in virtual reality
Authors: Korzeniowski, Przemyslaw
Item Type: Thesis or dissertation
Abstract: Improvements in quality and safety standards in surgical training, reduction in training hours and constant technological advances have challenged the traditional apprenticeship model to create a competent surgeon in a patient-safe way. As a result, pressure on training outside the operating room has increased. Interactive, computer based Virtual Reality (VR) simulators offer a safe, cost-effective, controllable and configurable training environment free from ethical and patient safety issues. Two prototype, yet fully-functional VR simulator systems for minimally invasive procedures relying on flexible instruments were developed and validated. NOViSE is the first force-feedback enabled VR simulator for Natural Orifice Transluminal Endoscopic Surgery (NOTES) training supporting a flexible endoscope. VCSim3 is a VR simulator for cardiovascular interventions using catheters and guidewires. The underlying mathematical model of flexible instruments in both simulator prototypes is based on an established theoretical framework – the Cosserat Theory of Elastic Rods. The efficient implementation of the Cosserat Rod model allows for an accurate, real-time simulation of instruments at haptic-interactive rates on an off-the-shelf computer. The behaviour of the virtual tools and its computational performance was evaluated using quantitative and qualitative measures. The instruments exhibited near sub-millimetre accuracy compared to their real counterparts. The proposed GPU implementation further accelerated their simulation performance by approximately an order of magnitude. The realism of the simulators was assessed by face, content and, in the case of NOViSE, construct validity studies. The results indicate good overall face and content validity of both simulators and of virtual instruments. NOViSE also demonstrated early signs of construct validity. VR simulation of flexible instruments in NOViSE and VCSim3 can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. Moreover, in the context of an innovative and experimental technique such as NOTES, NOViSE could potentially facilitate its development and contribute to its popularization by keeping practitioners up to date with this new minimally invasive technique.
Content Version: Open Access
Issue Date: May-2015
Date Awarded: Apr-2016
URI: http://hdl.handle.net/10044/1/58344
DOI: https://doi.org/10.25560/58344
Supervisor: Bello, Fernando
Department: Department of Surgery & Cancer
Publisher: Imperial College London
Qualification Level: Doctoral
Qualification Name: Doctor of Philosophy (PhD)
Appears in Collections:Department of Surgery and Cancer PhD Theses

Unless otherwise indicated, items in Spiral are protected by copyright and are licensed under a Creative Commons Attribution NonCommercial NoDerivatives License.

Creative Commons