53
IRUS TotalDownloads
Altmetric
A definition of the magnetic transition temperature using valence bond theory
File | Description | Size | Format | |
---|---|---|---|---|
jjornetsomoza_jpca.pdf | Accepted version | 781.32 kB | Adobe PDF | View/Open |
Title: | A definition of the magnetic transition temperature using valence bond theory |
Authors: | Jornet-Somoza, J Deumal, M Borge, J Robb, MA |
Item Type: | Journal Article |
Abstract: | Macroscopic magnetic properties are analyzed using Valence Bond theory. Commonly the critical temperature TC for magnetic systems is associated with a maximum in the energy-based heat capacity Cp(T). Here a more broadly applicable definition of the magnetic transition temperature TC is described using spin moment expectation value (i.e. applying the spin exchange density operator) instead of energy. Namely, the magnetic capacity Cs(T) reflects variation in the spin multiplicity as a function of temperature, which is shown to be related to ∂[χT(T)]/∂T. Magnetic capacity Cs(T) depends on long-range spin interactions that are not relevant in the energy-based heat capacity Cp(T). Differences between Cs(T) and Cp(T) are shown to be due to spin order/disorder within the crystal, that can be monitored via a Valence Bond analysis of the corresponding magnetic wavefunction. Indeed the concept of the Boltzmann spin-alignment order is used to provide information about the spin correlation between magnetic units. As a final illustration, the critical temperature is derived from the magnetic capacity for several molecular magnets presenting different magnetic topolo- gies that have been experimentally studied. A systematic shift between the transition temperatures associated with Cs(T) and Cp(T) is observed. It is demonstrated that this shift can be attributed to the loss of long-range spin correlation. This suggests that the magnetic capacity Cs(T) can be used as a predictive tool for the magnetic topology, and thus for the synthetic chemists. |
Issue Date: | 29-Jan-2018 |
Date of Acceptance: | 29-Jan-2018 |
URI: | http://hdl.handle.net/10044/1/56774 |
DOI: | https://dx.doi.org/10.1021/acs.jpca.7b10657 |
ISSN: | 1089-5639 |
Publisher: | American Chemical Society |
Start Page: | 2168 |
End Page: | 2177 |
Journal / Book Title: | Journal of Physical Chemistry A |
Volume: | 122 |
Issue: | 8 |
Copyright Statement: | © 2018 American Chemical Society |
Keywords: | 0307 Theoretical And Computational Chemistry 0202 Atomic, Molecular, Nuclear, Particle And Plasma Physics 0306 Physical Chemistry (Incl. Structural) |
Publication Status: | Published |
Appears in Collections: | Chemistry Faculty of Natural Sciences |