53
IRUS Total
Downloads
  Altmetric

A definition of the magnetic transition temperature using valence bond theory

File Description SizeFormat 
jjornetsomoza_jpca.pdfAccepted version781.32 kBAdobe PDFView/Open
Title: A definition of the magnetic transition temperature using valence bond theory
Authors: Jornet-Somoza, J
Deumal, M
Borge, J
Robb, MA
Item Type: Journal Article
Abstract: Macroscopic magnetic properties are analyzed using Valence Bond theory. Commonly the critical temperature TC for magnetic systems is associated with a maximum in the energy-based heat capacity Cp(T). Here a more broadly applicable definition of the magnetic transition temperature TC is described using spin moment expectation value (i.e. applying the spin exchange density operator) instead of energy. Namely, the magnetic capacity Cs(T) reflects variation in the spin multiplicity as a function of temperature, which is shown to be related to ∂[χT(T)]/∂T. Magnetic capacity Cs(T) depends on long-range spin interactions that are not relevant in the energy-based heat capacity Cp(T). Differences between Cs(T) and Cp(T) are shown to be due to spin order/disorder within the crystal, that can be monitored via a Valence Bond analysis of the corresponding magnetic wavefunction. Indeed the concept of the Boltzmann spin-alignment order is used to provide information about the spin correlation between magnetic units. As a final illustration, the critical temperature is derived from the magnetic capacity for several molecular magnets presenting different magnetic topolo- gies that have been experimentally studied. A systematic shift between the transition temperatures associated with Cs(T) and Cp(T) is observed. It is demonstrated that this shift can be attributed to the loss of long-range spin correlation. This suggests that the magnetic capacity Cs(T) can be used as a predictive tool for the magnetic topology, and thus for the synthetic chemists.
Issue Date: 29-Jan-2018
Date of Acceptance: 29-Jan-2018
URI: http://hdl.handle.net/10044/1/56774
DOI: https://dx.doi.org/10.1021/acs.jpca.7b10657
ISSN: 1089-5639
Publisher: American Chemical Society
Start Page: 2168
End Page: 2177
Journal / Book Title: Journal of Physical Chemistry A
Volume: 122
Issue: 8
Copyright Statement: © 2018 American Chemical Society
Keywords: 0307 Theoretical And Computational Chemistry
0202 Atomic, Molecular, Nuclear, Particle And Plasma Physics
0306 Physical Chemistry (Incl. Structural)
Publication Status: Published
Appears in Collections:Chemistry
Faculty of Natural Sciences