Altmetric
An $L^2$ theory for differential forms on path spaces. I
Publication available at: | http://www.sciencedirect.com/science/article/pii/S0022123607003643?via=ihub |
---|
Title: | An $L^2$ theory for differential forms on path spaces. I |
Authors: | Elworthy, KD Li, X-M |
Item Type: | Journal Article |
Issue Date: | 1-Jan-2008 |
Date of Acceptance: | 1-Oct-2007 |
URI: | http://hdl.handle.net/10044/1/54123 |
DOI: | https://dx.doi.org/10.1016/j.jfa.2007.09.016 |
ISSN: | 0022-1236 |
Start Page: | 196 |
End Page: | 245 |
Journal / Book Title: | Journal of Functional Analysis |
Volume: | 254 |
Copyright Statement: | © 2007 Elsevier Inc. All rights reserved. This article is under Elsevier's Open Archive policy. |
Keywords: | Science & Technology Physical Sciences Mathematics MATHEMATICS path space L-2 cohomology Hodge decomposition Malliavin calculus Banach manifolds Bismut tangent spaces Markovian connection it(o)over-cap map infinite dimensional curvature exterior products differential forms COMPACT RIEMANNIAN MANIFOLD HODGE-KODAIRA DECOMPOSITION WIENER SPACE LOOP SPACE INFINITE DIMENSIONS TANGENT PROCESSES SMOOTH FUNCTIONS VECTOR-FIELDS DIVERGENCE FORMULAS math.PR 0101 Pure Mathematics General Mathematics |
Notes: | mrclass: 58J65 (60H07) mrnumber: 2375069 mrreviewer: Maria Gordina |
Open Access location: | http://www.sciencedirect.com/science/article/pii/S0022123607003643?via=ihub |
Article Number: | 1 |
Appears in Collections: | Pure Mathematics Faculty of Natural Sciences Mathematics |