100
IRUS TotalDownloads
Altmetric
A Poincaré inequality on loop spaces
File | Description | Size | Format | |
---|---|---|---|---|
0905.3007v1.pdf | Accepted version | 219.87 kB | Adobe PDF | View/Open |
Title: | A Poincaré inequality on loop spaces |
Authors: | Chen, X Li, X-M Wu, B |
Item Type: | Journal Article |
Abstract: | We show that the Laplacian on the loop space over a class of Riemannian manifolds has a spectral gap. The Laplacian is defined using the Levi-Civita connection, the Brownian bridge measure and the standard Bismut tangent spaces. |
Issue Date: | 26-May-2010 |
Date of Acceptance: | 1-Oct-2009 |
URI: | http://hdl.handle.net/10044/1/54122 |
DOI: | https://dx.doi.org/10.1016/j.jfa.2010.05.006 |
ISSN: | 0022-1236 |
Publisher: | Elsevier |
Start Page: | 1421 |
End Page: | 1442 |
Journal / Book Title: | Journal of Functional Analysis |
Volume: | 259 |
Issue: | 6 |
Copyright Statement: | © 2010, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Keywords: | Science & Technology Physical Sciences Mathematics MATHEMATICS Path space Loop space Brownian bridge measure Poincare inequalities Malliavin calculus LOGARITHMIC SOBOLEV INEQUALITIES COMPACT RIEMANNIAN MANIFOLD QUASI-INVARIANCE THEOREM PINNED BROWNIAN-MOTION HEAT KERNEL MEASURE WIENER MEASURE SPECTRAL GAPS DIFFERENTIAL-CALCULUS PATH SPACES INTEGRATION math.PR 0101 Pure Mathematics General Mathematics |
Notes: | mrclass: 58J65 (28C20 58B20 60H07) mrnumber: 2659766 mrreviewer: Maria Gordina |
Publication Status: | Published |
Appears in Collections: | Pure Mathematics Faculty of Natural Sciences Mathematics |