IRUS Total

Mapping Aboveground Carbon in Oil Palm Plantations Using LiDAR: A Comparison of Tree-Centric versus Area-Based Approaches

File Description SizeFormat 
Nunes et al 2017 RemSens - LiDAR mapping oil palm carbon.pdfPublished version4.29 MBAdobe PDFView/Open
Title: Mapping Aboveground Carbon in Oil Palm Plantations Using LiDAR: A Comparison of Tree-Centric versus Area-Based Approaches
Authors: Nunes, MH
Ewers, RM
Turner, EC
Coomes, DA
Item Type: Journal Article
Abstract: Southeast Asia is the epicentre of world palm oil production. Plantations in Malaysia have increased 150% in area within the last decade, mostly at the expense of tropical forests. Maps of the aboveground carbon density (ACD) of vegetation generated by remote sensing technologies, such as airborne LiDAR, are vital for quantifying the effects of land use change for greenhouse gas emissions, and many papers have developed methods for mapping forests. However, nobody has yet mapped oil palm ACD from LiDAR. The development of carbon prediction models would open doors to remote monitoring of plantations as part of efforts to make the industry more environmentally sustainable. This paper compares the performance of tree-centric and area-based approaches to mapping ACD in oil palm plantations. We find that an area-based approach gave more accurate estimates of carbon density than tree-centric methods and that the most accurate estimation model includes LiDAR measurements of top-of-canopy height and canopy cover. We show that tree crown segmentation is sensitive to crown density, resulting in less accurate tree density and ACD predictions, but argue that tree-centric approach can nevertheless be useful for monitoring purposes, providing a method to detect, extract and count oil palm trees automatically from images.
Issue Date: 9-Aug-2017
Date of Acceptance: 4-Aug-2017
URI: http://hdl.handle.net/10044/1/50361
DOI: https://dx.doi.org/10.3390/rs9080816
ISSN: 2072-4292
Publisher: MDPI AG
Journal / Book Title: Remote Sensing
Volume: 9
Copyright Statement: © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Sponsor/Funder: Rainforest Research Sdn Bhd
Funder's Grant Number: LBEE_P34395
Publication Status: Published
Article Number: 816
Appears in Collections:Faculty of Natural Sciences