IRUS Total

Uniqueness and short time regularity of the weak Kähler–Ricci flow

File Description SizeFormat 
WKRFlow_Revision.pdfAccepted version526.94 kBAdobe PDFView/Open
Title: Uniqueness and short time regularity of the weak Kähler–Ricci flow
Authors: Di Nezza, E
Lu, CH
Item Type: Journal Article
Abstract: Let X be a compact Kähler manifold. We prove that the Kähler–Ricci flow starting from arbitrary closed positive (1,1)-currents is smooth outside some analytic subset. This regularity result is optimal, meaning that the flow has positive Lelong numbers for short time if the initial current has. We also prove that the flow is unique when starting from currents with zero Lelong numbers.
Issue Date: 13-Oct-2016
Date of Acceptance: 4-Oct-2016
URI: http://hdl.handle.net/10044/1/44946
DOI: http://dx.doi.org/10.1016/j.aim.2016.10.011
ISSN: 1090-2082
Publisher: Elsevier
Start Page: 953
End Page: 993
Journal / Book Title: Advances in Mathematics
Volume: 305
Copyright Statement: © 2016, Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Sponsor/Funder: Commission of the European Communities
Funder's Grant Number: Marie Skłodowska-Curie Action 660940 — KRF-CY (MSCA–IF)
Keywords: General Mathematics
0101 Pure Mathematics
Publication Status: Published
Appears in Collections:Pure Mathematics
Faculty of Natural Sciences