43
IRUS Total
Downloads
  Altmetric

Chemical bonding at the metal–organic framework/metal oxide interface: simulated epitaxial growth of MOF-5 on rutile TiO2

File Description SizeFormat 
jmca_mof-tio2_17.pdfPublished version1.83 MBAdobe PDFView/Open
Title: Chemical bonding at the metal–organic framework/metal oxide interface: simulated epitaxial growth of MOF-5 on rutile TiO2
Authors: Bristow, JK
Butler, KT
Svane, KL
Gale, JD
Walsh, A
Item Type: Journal Article
Abstract: Thin-film deposition of metal–organic frameworks (MOFs) is now possible, but little is known regarding the microscopic nature of hybrid hetero-interfaces. We first assess optimal substrate combinations for coherent epitaxy of MOFs based on a lattice matching procedure. We then perform a detailed quantum mechanical/molecular mechanical investigation of the growth of (011) MOF-5 on (110) rutile TiO2. The lowest energy interface configuration involves a bidentate connection between two TiO6 polyhedra with deprotonation of terephthalic acid to a bridging oxide site. The epitaxy of MOF-5 on the surface of TiO2 was modelled with a forcefield parameterised to quantum chemical binding energies and bond lengths. The microscopic interface structure and chemical bonding characteristics are expected to be relevant to other hybrid framework-oxide combinations.
Issue Date: 2-Mar-2017
Date of Acceptance: 21-Feb-2017
URI: http://hdl.handle.net/10044/1/44872
DOI: https://dx.doi.org/10.1039/c7ta00356k
ISSN: 2050-7496
Publisher: Royal Society of Chemistry
Start Page: 6226
End Page: 6232
Journal / Book Title: Journal of Materials Chemistry A
Volume: 5
Copyright Statement: © The Royal Society of Chemistry 2017. This is an open access article licensed under a Creative Commons Attribution 3.0 Unported Licence (https://creativecommons.org/licenses/by/3.0/)
Sponsor/Funder: The Royal Society
Funder's Grant Number: UF150657
Keywords: Science & Technology
Physical Sciences
Technology
Chemistry, Physical
Energy & Fuels
Materials Science, Multidisciplinary
Chemistry
Materials Science
SELF-ASSEMBLED MONOLAYERS
MM3 FORCE-FIELD
THIN-FILMS
MOLECULAR-MECHANICS
BASIS-SETS
ROW ATOMS
SURFACE
PROGRAM
TIO2(110)
HKUST-1
Publication Status: Published
Appears in Collections:Materials
Faculty of Engineering