IRUS Total

Coherence, thermodynamics and uncertainty relations

File Description SizeFormat 
Korzekwa-K-2016-PhD-Thesis.pdfThesis3.54 MBAdobe PDFView/Open
Title: Coherence, thermodynamics and uncertainty relations
Authors: Korzekwa, Kamil
Item Type: Thesis or dissertation
Abstract: The principle of superposition is one of the main building blocks of quantum physics and has tremendous consequences both for our fundamental understanding of nature and for technological applications. In particular, the existence of coherent superposition leads to the concept of unavoidable quantum uncertainty. The role played by this "coherent" uncertainty within thermodynamics, as well as its relationship to classical lack of knowledge, is the main subject of this thesis. In Part I we study thermodynamic limitations of processing quantum coherence within a resource-theoretic framework. Using the time-translation symmetry that arises from the first law of thermodynamics, we find constraints on possible manipulations of coherence and prove their irreversibility due to the second law. We also generalise to the quantum domain Szilard's concept of converting information into work. Namely, we show how, in the presence of a heat bath, coherence of a system can be exploited to perform mechanical work. Finally, we analyse the effect that coherence has on the structure of the thermodynamic arrow of time, i.e., on the set of states into which a given state can freely evolve under thermodynamic constraints. In Part II we focus on the interplay between quantum and classical uncertainty manifested in uncertainty relations. We show that separating the total uncertainty into these two distinct components leads to a new type of "fixed-entropy" uncertainty relation. We also analyse how classical ignorance affects the structure of states that minimise the unavoidable uncertainty arising from the noncommutativity of two observables. Finally, we study error-disturbance trade-off relations and, by proving that quantum uncertainty can be simultaneously maximised for any two observables, we clarify the unphysical nature of state-dependent relations.
Content Version: Open Access
Issue Date: Sep-2016
Date Awarded: Dec-2016
URI: http://hdl.handle.net/10044/1/43343
DOI: https://doi.org/10.25560/43343
Supervisor: Rudolph, Terry
Jennings, David
Sponsor/Funder: Engineering and Physical Sciences Research Council
Department: Physics
Publisher: Imperial College London
Qualification Level: Doctoral
Qualification Name: Doctor of Philosophy (PhD)
Appears in Collections:Physics PhD theses

Unless otherwise indicated, items in Spiral are protected by copyright and are licensed under a Creative Commons Attribution NonCommercial NoDerivatives License.

Creative Commons