119
IRUS TotalDownloads
Altmetric
InGaAs/GaAsP strain balanced multi-quantum wires grown on misoriented GaAs substrates for high efficiency solar cells
File | Description | Size | Format | |
---|---|---|---|---|
1.4894424.pdf | Published version | 1.14 MB | Adobe PDF | View/Open |
Title: | InGaAs/GaAsP strain balanced multi-quantum wires grown on misoriented GaAs substrates for high efficiency solar cells |
Authors: | Alonso-Alvarez, D Thomas, T Fuehrer, M Hylton, NP Ekins-Daukes, NJ Lackner, D Philipps, SP Bett, AW Sodabanlu, H Fujii, H Watanabe, K Sugiyama, M Nasi, L Campanini, M |
Item Type: | Journal Article |
Abstract: | Quantum wires (QWRs) form naturally when growing strain balanced InGaAs/GaAsP multi-quantum wells (MQW) on GaAs [100] 6° misoriented substrates under the usual growth conditions. The presence of wires instead of wells could have several unexpected consequences for the performance of the MQW solar cells, both positive and negative, that need to be assessed to achieve high conversion efficiencies. In this letter, we study QWR properties from the point of view of their performance as solar cells by means of transmission electron microscopy, time resolved photoluminescence and external quantum efficiency (EQE) using polarised light. We find that these QWRs have longer lifetimes than nominally identical QWs grown on exact [100] GaAs substrates, of up to 1 μs, at any level of illumination. We attribute this effect to an asymmetric carrier escape from the nanostructures leading to a strong 1D-photo-charging, keeping electrons confined along the wire and holes in the barriers. In principle, these extended lifetimes could be exploited to enhance carrier collection and reduce dark current losses. Light absorption by these QWRs is 1.6 times weaker than QWs, as revealed by EQE measurements, which emphasises the need for more layers of nanostructures or the use light trapping techniques. Contrary to what we expected, QWR show very low absorption anisotropy, only 3.5%, which was the main drawback a priori of this nanostructure. We attribute this to a reduced lateral confinement inside the wires. These results encourage further study and optimization of QWRs for high efficiency solar cells. |
Issue Date: | 29-Aug-2014 |
Date of Acceptance: | 20-Aug-2014 |
URI: | http://hdl.handle.net/10044/1/41074 |
DOI: | http://dx.doi.org/10.1063/1.4894424 |
ISSN: | 1077-3118 |
Publisher: | AIP Publishing |
Journal / Book Title: | Applied Physics Letters |
Volume: | 105 |
Issue: | 8 |
Copyright Statement: | © 2014 AIP Publishing LLC. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Applied Physics Letters and may be found at http://dx.doi.org/10.1063/1.4894424. |
Sponsor/Funder: | Commission of the European Communities |
Funder's Grant Number: | 283798 |
Keywords: | Science & Technology Physical Sciences Physics, Applied Physics CARRIER ESCAPE QUANTUM WIRES WELL NUMBER PHOTOLUMINESCENCE PERFORMANCE DEPENDENCE Applied Physics 09 Engineering 02 Physical Sciences |
Publication Status: | Published |
Article Number: | 083124 |
Appears in Collections: | Physics Experimental Solid State Centre for Environmental Policy Grantham Institute for Climate Change |