193
IRUS Total
Downloads
  Altmetric

Large-area flexible electronics based on low-temperature solution-processed oxide semiconductors

File Description SizeFormat 
Lin-Y-2015-PhD-Thesis.pdfThesis19.27 MBAdobe PDFView/Open
Title: Large-area flexible electronics based on low-temperature solution-processed oxide semiconductors
Authors: Lin, Yen-Hung
Item Type: Thesis or dissertation
Abstract: Due to their high charge carrier mobility, optical transparency and mechanical flexibility, thin-film transistors (TFTs) based on metal oxide semiconductors represent an emerging technology that offers the potential to revolutionise the next-generations of large-area electronics. This thesis focuses on the development of high-performance TFTs based on low-temperature, solution-processed metal oxide semiconductors that are compatible with inexpensive flexible plastic substrates. The first part of the dissertation describes an ultraviolet light assisted processing method suitable for room-temperature activation of ZnO nanoparticles and their application as semiconducting channels in TFTs. The impact of the semiconductor/dielectric interface on electrical performance is studied using different device configurations and dielectric surface-passivation methods. Furthermore, a nanocomposite concept is proposed in order to assist electron transport between different crystalline domains. Using this approach, TFTs with electron mobilities of ~3 cm2/Vs are demonstrated. The second part of this work explores a carbon-free, aqueous-based Zn-ammine complex route for the synthesis of polycrystalline ZnO thin-films at low temperature and their subsequent use in TFTs. Concurrently, the development of a complementary high-κ oxide dielectric system enables the demonstration of high-performance ZnO TFTs with electron mobilities >10 cm2/Vs and operation voltage down to ~1.2 V. This low-temperature aqueous chemistry is further explored using a facile n-type doping approach. Enhancement in electrical performance is attributed to the different crystallographic properties of the Al-doped ZnO layers. The final part of the thesis introduces a novel TFT concept that exploits the enhanced electron transport properties of low-dimensional polycrystalline quasi-superlattices (QSLs), consisting of sequentially spin-cast layers of In2O3, Ga2O3 and ZnO deposited at temperatures <200 °C. Optimised oxide QSL transistors exhibit electron mobility values of >40 cm2/Vs - an order of magnitude higher than devices based on single binary oxide layers. Based on temperature dependent electron transport and capacitance-voltage measurements, it is reasoned that the enhanced electrical performance arises from the presence of quasi two-dimensional electron gas-like systems formed at the carefully engineered oxide heterointerfaces buried within the QSLs.
Content Version: Open Access
Issue Date: May-2015
Date Awarded: Aug-2015
URI: http://hdl.handle.net/10044/1/38442
DOI: https://doi.org/10.25560/38442
Supervisor: Anthopoulos, Thomas
Department: Physics
Publisher: Imperial College London
Qualification Level: Doctoral
Qualification Name: Doctor of Philosophy (PhD)
Appears in Collections:Physics PhD theses



Unless otherwise indicated, items in Spiral are protected by copyright and are licensed under a Creative Commons Attribution NonCommercial NoDerivatives License.

Creative Commons