IRUS Total

Medical Robotics for use in MRI Guided Endoscopy

File Description SizeFormat 
North-OJ-2014-PhD-Thesis.pdfThesis9.28 MBAdobe PDFView/Open
Title: Medical Robotics for use in MRI Guided Endoscopy
Authors: North, Oliver John
Item Type: Thesis or dissertation
Abstract: Interventional Magnetic Resonance Imaging (MRI) is a developing field that aims to provide intra-operative MRI to a clinician to guide diagnostic or therapeutic medical procedures. MRI provides excellent soft tissue contrast at sub-millimetre resolution in both 2D and 3D without the need for ionizing radiation. Images can be acquired in near real-time for guidance purposes. Operating in the MR environment brings challenges due to the high static magnetic field, switching magnetic field gradients and RF excitation pulses. In addition high field closed bore scanners have spatial constraints that severely limit access to the patient. This thesis presents a system for MRI-guided Endoscopic Retrograde Cholangio-pancreatography (ERCP). This includes a remote actuation system that enables an MRI-compatible endoscope to be controlled whilst the patient is inside the MRI scanner, overcoming the spatial and procedural constraints imposed by the closed scanner bore. The modular system utilises non-magnetic ultrasonic motors and is designed for image-guided user-in-the-loop control. A novel miniature MRI compatible clutch has been incorporated into the design to reduce the need for multiple parallel motors. The actuation system is MRI compatible does not degrade the MR images below acceptable levels. User testing showed that the actuation system requires some degree of training but enables completion of a simulated ERCP procedure with no loss of performance. This was demonstrated using a tailored ERCP simulator and kinematic assessment tool, which was validated with users from a range of skill levels to ensure that it provides an objective measurement of endoscopic skill. Methods of tracking the endoscope in real-time using the MRI scanner are explored and presented here. Use of the MRI-guided ERCP system was shown to improve the operator’s ability to position the endoscope in an experimental environment compared with a standard fluoroscopic-guided system.
Content Version: Open Access
Issue Date: Aug-2013
Date Awarded: Feb-2014
URI: http://hdl.handle.net/10044/1/23924
DOI: https://doi.org/10.25560/23924
Supervisor: Ristic, Mihailo
Sponsor/Funder: Wellcome Trust (London, England)
Department: Mechanical Engineering
Publisher: Imperial College London
Qualification Level: Doctoral
Qualification Name: Doctor of Philosophy (PhD)
Appears in Collections:Mechanical Engineering PhD theses

Unless otherwise indicated, items in Spiral are protected by copyright and are licensed under a Creative Commons Attribution NonCommercial NoDerivatives License.

Creative Commons