59
IRUS Total
Downloads
  Altmetric

A Proof of the Marmi-Moussa-Yoccoz conjecture for rotation numbers of high type

File Description SizeFormat 
Inventiones mathematicae_2015.pdfAccepted version775.84 kBAdobe PDFView/Open
Title: A Proof of the Marmi-Moussa-Yoccoz conjecture for rotation numbers of high type
Authors: Cheraghi, D
Chéritat, A
Item Type: Journal Article
Abstract: Marmi Moussa and Yoccoz conjectured that some error function Upsilon, related to the approximation of the size of Siegel disk by some arithmetic function of the rotation number theta, is a Holder continuous function of theta with exponent 1/2. Using the renormalization invariant class of Inou and Shishikura, we prove this conjecture for the restriction of Upsilon to a class of high type numbers.
Issue Date: 1-Nov-2015
Date of Acceptance: 14-Dec-2014
URI: http://hdl.handle.net/10044/1/19580
DOI: 10.1007/s00222-014-0576-2
ISSN: 0020-9910
Publisher: Springer Verlag
Start Page: 677
End Page: 742
Journal / Book Title: Inventiones Mathematicae
Volume: 202
Copyright Statement: © 2015, Springer-Verlag Berlin Heidelberg. The final publication is available at Springer via http://dx.doi.org/10.1007/s00222-014-0576-2
Sponsor/Funder: Engineering & Physical Science Research Council (EPSRC)
Funder's Grant Number: EP/M01746X/1
Keywords: Science & Technology
Physical Sciences
Mathematics
QUADRATIC SIEGEL DISKS
BRJUNO FUNCTIONS
JULIA SETS
SIZE
math.DS
math.DS
math-ph
math.MP
37F25 (Primary) 58D25 (Secondary)
math.DS
math.DS
math-ph
math.MP
Primary 37F50, Secondary 35J60, 30E20, 11A55
0101 Pure Mathematics
General Mathematics
Notes: 66 pages,
Publication Status: Published
Online Publication Date: 2015-01-13
Appears in Collections:Pure Mathematics
Faculty of Natural Sciences
Mathematics