Roles of the C-terminal domains of topoisomerase II alpha and topoisomerase II beta in regulation of the decatenation checkpoint
File(s)gkx325.pdf (3.31 MB)
Published version
Author(s)
Type
Journal Article
Abstract
Topoisomerase (topo) IIα and IIβ maintain genome stability and are targets for anti-tumor drugs. In this study, we demonstrate that the decatenation checkpoint is regulated, not only by topo IIα, as previously reported, but also by topo IIβ. The decatenation checkpoint is most efficient when both isoforms are present. Regulation of this checkpoint and sensitivity to topo II-targeted drugs is influenced by the C-terminal domain (CTD) of the topo II isoforms and by a conserved non-catalytic tyrosine, Y640 in topo IIα and Y656 in topo IIβ. Deletion of most of the CTD of topo IIα, while preserving the nuclear localization signal (NLS), enhances the decatenation checkpoint and sensitivity to topo II-targeted drugs. In contrast, deletion of most of the CTD of topo IIβ, while preserving the NLS, and mutation of Y640 in topo IIα and Y656 in topo IIβ inhibits these activities. Structural studies suggest that the differential impact of the CTD on topo IIα and topo IIβ function may be due to differences in CTD charge distribution and differential alignment of the CTD with reference to transport DNA. Together these results suggest that topo IIα and topo IIβ cooperate to maintain genome stability, which may be distinctly modulated by their CTDs.
Date Issued
2017-05-02
Date Acceptance
2017-04-14
Citation
NUCLEIC ACIDS RESEARCH, 2017, 45 (10), pp.5995-6010
ISSN
0305-1048
Publisher
Oxford University Press
Start Page
5995
End Page
6010
Journal / Book Title
NUCLEIC ACIDS RESEARCH
Volume
45
Issue
10
Copyright Statement
© 2017 The Author(s). Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Identifier
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000402510700046&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
Subjects
Science & Technology
Life Sciences & Biomedicine
Biochemistry & Molecular Biology
DNA TOPOISOMERASE
STRUCTURAL BASIS
G(2) CHECKPOINT
CELL-LINES
EXPRESSION
DIFFERENTIATION
TRANSCRIPTION
MECHANISMS
RESISTANT
ISOFORMS
05 Environmental Sciences
06 Biological Sciences
08 Information And Computing Sciences
Developmental Biology
Publication Status
Published