Counting the lives saved by DOTS in India: a model-based approach
File(s)art%3A10.1186%2Fs12916-017-0809-5.pdf (1 MB)
Published version
Author(s)
Mandal, S
Chadha, VK
Laxminarayan, R
Arinaminpathy, N
Type
Journal Article
Abstract
Background:
Against the backdrop of renewed efforts to control tuberculosis (TB) worldwide, there is a need for improved methods to estimate the public health impact of TB programmes. Such methods should not only address the improved outcomes amongst those receiving care but should also account for the impact of TB services on reducing transmission.
Methods:
Vital registration data in India are not sufficiently reliable for estimates of TB mortality. As an alternative approach, we developed a mathematical model of TB transmission dynamics and mortality, capturing the scale-up of DOTS in India, through the rollout of the Revised National TB Control Programme (RNTCP). We used available data from the literature to calculate TB mortality hazards amongst untreated TB; amongst cases treated under RNTCP; and amongst cases treated under non-RNTCP conditions. Using a Bayesian evidence synthesis framework, we combined these data with current estimates for the TB burden in India to calibrate the transmission model. We simulated the national TB epidemic in the presence and absence of the DOTS programme, measuring lives saved as the difference in TB deaths between these scenarios.
Results:
From 1997 to 2016, India’s RNTCP has saved 7.75 million lives (95% Bayesian credible interval 6.29–8.82 million). We estimate that 42% of this impact was due to the ‘indirect’ effects of the RNTCP in averting transmission as well as improving treatment outcomes.
Conclusions:
When expanding high-quality TB services, a substantial proportion of overall impact derives from preventive, as well as curative, benefits. Mathematical models, together with sufficient data, can be a helpful tool in estimating the true population impact of major disease control programmes.
Against the backdrop of renewed efforts to control tuberculosis (TB) worldwide, there is a need for improved methods to estimate the public health impact of TB programmes. Such methods should not only address the improved outcomes amongst those receiving care but should also account for the impact of TB services on reducing transmission.
Methods:
Vital registration data in India are not sufficiently reliable for estimates of TB mortality. As an alternative approach, we developed a mathematical model of TB transmission dynamics and mortality, capturing the scale-up of DOTS in India, through the rollout of the Revised National TB Control Programme (RNTCP). We used available data from the literature to calculate TB mortality hazards amongst untreated TB; amongst cases treated under RNTCP; and amongst cases treated under non-RNTCP conditions. Using a Bayesian evidence synthesis framework, we combined these data with current estimates for the TB burden in India to calibrate the transmission model. We simulated the national TB epidemic in the presence and absence of the DOTS programme, measuring lives saved as the difference in TB deaths between these scenarios.
Results:
From 1997 to 2016, India’s RNTCP has saved 7.75 million lives (95% Bayesian credible interval 6.29–8.82 million). We estimate that 42% of this impact was due to the ‘indirect’ effects of the RNTCP in averting transmission as well as improving treatment outcomes.
Conclusions:
When expanding high-quality TB services, a substantial proportion of overall impact derives from preventive, as well as curative, benefits. Mathematical models, together with sufficient data, can be a helpful tool in estimating the true population impact of major disease control programmes.
Date Issued
2017-03-03
Date Acceptance
2017-02-06
Citation
BMC MEDICINE, 2017, 15 (1)
ISSN
1741-7015
Publisher
BIOMED CENTRAL LTD
Journal / Book Title
BMC MEDICINE
Volume
15
Issue
1
Copyright Statement
© 2017 The Author(s). Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Identifier
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000396074000001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
Subjects
Science & Technology
Life Sciences & Biomedicine
Medicine, General & Internal
General & Internal Medicine
India
Tuberculosis
Modelling
Deaths averted
TUBERCULOSIS-CONTROL
PULMONARY TUBERCULOSIS
PRACTITIONERS
11 Medical And Health Sciences
Publication Status
Published
Article Number
ARTN 47