Exposure to ambient air pollution and cognitive function: an analysis of the English Longitudinal Study of Ageing cohort
File(s)s12940-024-01075-1.pdf (877.41 KB)
Published version
Author(s)
Type
Journal Article
Abstract
Background
An increasing number of studies suggest adverse effects of exposure to ambient air pollution on cognitive function, but the evidence is still limited. We investigated the associations between long-term exposure to air pollutants and cognitive function in the English Longitudinal Study of Ageing (ELSA) cohort of older adults.
Methods
Our sample included 8,883 individuals from ELSA, based on a nationally representative study of people aged ≥ 50 years, followed-up from 2002 until 2017. Exposure to air pollutants was modelled by the CMAQ-urban dispersion model and assigned to the participants’ residential postcodes. Cognitive test scores of memory and executive function were collected biennially. The associations between these cognitive measures and exposure to ambient concentrations of NO2, PM10, PM2.5 and ozone were investigated using mixed-effects models adjusted for time-varying age, physical activity and smoking status, as well as baseline gender and level of education.
Results
Increasing long-term exposure per interquartile range (IQR) of NO2 (IQR: 13.05 μg/m3), PM10 (IQR: 3.35 μg/m3) and PM2.5 (IQR: 2.7 μg/m3) were associated with decreases in test scores of composite memory by -0.10 (95% confidence interval [CI]: -0.14, -0.07), -0.02 [-0.04, -0.01] and -0.08 [-0.11, -0.05], respectively. The same increases in NO2, PM10 and PM2.5 were associated with decreases in executive function score of -0.31 [-0.38, -0.23], -0.05 [-0.08, -0.02] and -0.16 [-0.22, -0.10], respectively. The association with ozone was inverse across both tests. Similar results were reported for the London-dwelling sub-sample of participants.
Conclusions
The present study was based on a long follow-up with several repeated measurements per cohort participant and long-term air pollution exposure assessment at a fine spatial scale. Increasing long-term exposure to NO2, PM10 and PM2.5 was associated with a decrease in cognitive function in older adults in England. This evidence can inform policies related to modifiable environmental exposures linked to cognitive decline.
An increasing number of studies suggest adverse effects of exposure to ambient air pollution on cognitive function, but the evidence is still limited. We investigated the associations between long-term exposure to air pollutants and cognitive function in the English Longitudinal Study of Ageing (ELSA) cohort of older adults.
Methods
Our sample included 8,883 individuals from ELSA, based on a nationally representative study of people aged ≥ 50 years, followed-up from 2002 until 2017. Exposure to air pollutants was modelled by the CMAQ-urban dispersion model and assigned to the participants’ residential postcodes. Cognitive test scores of memory and executive function were collected biennially. The associations between these cognitive measures and exposure to ambient concentrations of NO2, PM10, PM2.5 and ozone were investigated using mixed-effects models adjusted for time-varying age, physical activity and smoking status, as well as baseline gender and level of education.
Results
Increasing long-term exposure per interquartile range (IQR) of NO2 (IQR: 13.05 μg/m3), PM10 (IQR: 3.35 μg/m3) and PM2.5 (IQR: 2.7 μg/m3) were associated with decreases in test scores of composite memory by -0.10 (95% confidence interval [CI]: -0.14, -0.07), -0.02 [-0.04, -0.01] and -0.08 [-0.11, -0.05], respectively. The same increases in NO2, PM10 and PM2.5 were associated with decreases in executive function score of -0.31 [-0.38, -0.23], -0.05 [-0.08, -0.02] and -0.16 [-0.22, -0.10], respectively. The association with ozone was inverse across both tests. Similar results were reported for the London-dwelling sub-sample of participants.
Conclusions
The present study was based on a long follow-up with several repeated measurements per cohort participant and long-term air pollution exposure assessment at a fine spatial scale. Increasing long-term exposure to NO2, PM10 and PM2.5 was associated with a decrease in cognitive function in older adults in England. This evidence can inform policies related to modifiable environmental exposures linked to cognitive decline.
Date Issued
2024-04-05
Date Acceptance
2024-03-25
Citation
Environmental Health, 2024, 23
ISSN
1476-069X
Publisher
BMC
Journal / Book Title
Environmental Health
Volume
23
Copyright Statement
© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
License URL
Identifier
https://ehjournal.biomedcentral.com/articles/10.1186/s12940-024-01075-1
Publication Status
Published
Article Number
35
Date Publish Online
2024-04-05