PU.1 regulates Alzheimer's disease-associated genes in primary human microglia
File(s)s13024-018-0277-1.pdf (6 MB)
Published version
Author(s)
Type
Journal Article
Abstract
Background Microglia play critical roles in the brain during homeostasis and pathological conditions. Understanding the molecular events underpinning microglial functions and activation states will further enable us to target these cells for the treatment of neurological disorders. The transcription factor PU.1 is critical in the development of myeloid cells and a major regulator of microglial gene expression. In the brain, PU.1 is specifically expressed in microglia and recent evidence from genome-wide association studies suggests that reductions in PU.1 contribute to a delayed onset of Alzheimer’s disease (AD), possibly through limiting neuroinflammatory responses. Methods To investigate how PU.1 contributes to immune activation in human microglia, microarray analysis was performed on primary human mixed glial cultures subjected to siRNA-mediated knockdown of PU.1. Microarray hits were confirmed by qRT-PCR and immunocytochemistry in both mixed glial cultures and isolated microglia following PU.1 knockdown. To identify attenuators of PU.1 expression in microglia, high throughput drug screening was undertaken using a compound library containing FDA-approved drugs. NanoString and immunohistochemistry was utilised to investigate the expression of PU.1 itself and PU.1-regulated mediators in primary human brain tissue derived from neurologically normal and clinically and pathologically confirmed cases of AD. Results Bioinformatic analysis of gene expression upon PU.1 silencing in mixed glial cultures revealed a network of modified AD-associated microglial genes involved in the innate and adaptive immune systems, particularly those involved in antigen presentation and phagocytosis. These gene changes were confirmed using isolated microglial cultures. Utilising high throughput screening of FDA-approved compounds in mixed glial cultures we identified the histone deacetylase inhibitor vorinostat as an effective attenuator of PU.1 expression in human microglia. Further characterisation of vorinostat in isolated microglial cultures revealed gene and protein changes partially recapitulating those seen following siRNA-mediated PU.1 knockdown. Lastly, we demonstrate that several of these PU.1-regulated genes are expressed by microglia in the human AD brain in situ. Conclusions Collectively, these results suggest that attenuating PU.1 may be a valid therapeutic approach to limit microglial-mediated inflammatory responses in AD and demonstrate utility of vorinostat for this purpose.
Date Issued
2018-08-20
Online Publication Date
2018-08-20
2018-10-17T14:36:08Z
Date Acceptance
2018-08-10
ISSN
1750-1326
Publisher
BioMed Central
Journal / Book Title
Molecular Neurodegeneration
Volume
13
Copyright Statement
The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Identifier
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000442176600001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
Subjects
Science & Technology
Life Sciences & Biomedicine
Neurosciences
Neurosciences & Neurology
Alzheimer's disease
Vorinostat
Phagocytosis
Antigen presentation
Drug screening
Neuroinflammation
GENOME-WIDE ASSOCIATION
SET ENRICHMENT ANALYSIS
HUMAN GLIAL CULTURES
ADULT HUMAN BRAIN
TRANSCRIPTION FACTOR
HUNTINGTONS-DISEASE
IDENTIFIES VARIANTS
MYELOID-LEUKEMIA
ANALYSIS TOOLKIT
COMMON VARIANTS
Alzheimer’s disease
1103 Clinical Sciences
1109 Neurosciences
0604 Genetics
Neurology & Neurosurgery
Publication Status
Published
Article Number
ARTN 44