Painful terminal neuroma prevention by capping PRGD/PDLLA conduit in rat sciatic nerves
Author(s)
Type
Journal Article
Abstract
Neuroma formation after amputation as a long-term deficiency leads to spontaneous neuropathic pain that reduces quality of life of patients. To prevent neuroma formation, capping techniques are implemented as effective treatments. However, an ideal, biocompatible material covering the nerves is an unmet clinical need. In this study, biocompatible characteristics presented by the poly(D,L-lactic acid)/arginylglycylaspartic acid (RGD peptide) modification of poly{(lactic acid)-co- [(glycolic acid)-alt-(L-lysine)]} (PRGD/PDLLA) are evaluated as a nerve conduit. After being capped on the rat sciatic nerve stump in vivo, rodent behaviors and tissue structures are compared via autotomy scoring and histological analyses. The PRGD/PDLLA capped group gains lower autotomy score and improves the recovery, where inflammatory infiltrations and excessive collagen deposition are defeated. Transmission electron microscopy images of the regeneration of myelin sheath in both groups show that abnormal myelination is only present in the uncapped rats. Changes in related genes (MPZ, MBP, MAG, and Krox20) are monitored quantitative real-time polymerase chain reaction (qRT-PCR) for mechanism investigation. The PRGD/PDLLA capping conduits not only act as physical barriers to inhibit the invasion of inflammatory infiltration in the scar tissue but also provide a suitable microenvironment for promoting nerve repairing and avoiding neuroma formation during nerve recovery.
Date Issued
2018-06
Date Acceptance
2018-03-01
Citation
Advanced Science, 2018, 5 (6), pp.1-11
ISSN
2198-3844
Publisher
Wiley Open Access
Start Page
1
End Page
11
Journal / Book Title
Advanced Science
Volume
5
Issue
6
Copyright Statement
© 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Identifier
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000435765900019&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
Subjects
Science & Technology
Physical Sciences
Technology
Chemistry, Multidisciplinary
Nanoscience & Nanotechnology
Materials Science, Multidisciplinary
Chemistry
Science & Technology - Other Topics
Materials Science
inflammation
nerve conduits
neuroma prevention
painful scar neuropathy
scar deposition
NEUROPATHIC PAIN
REGENERATION
MECHANISMS
INJURY
MANAGEMENT
RECONSTRUCTION
IMPLANTATION
INFLAMMATION
MYELINATION
AMPUTATION
Publication Status
Published
Article Number
ARTN 1700876
Date Publish Online
2018-03-27