Bacterial adaptation is constrained in complex communities
File(s)s41467-020-14570-z.pdf (1.78 MB)
Published version
Author(s)
Type
Journal Article
Abstract
A major unresolved question is how bacteria living in complex communities respond to environmental changes. In communities, biotic interactions may either facilitate or constrain evolution depending on whether the interactions expand or contract the range of ecological opportunities. A fundamental challenge is to understand how the surrounding biotic community modifies evolutionary trajectories as species adapt to novel environmental conditions. Here we show that community context can dramatically alter evolutionary dynamics using a novel approach that ‘cages’ individual focal strains within complex communities. We find that evolution of focal bacterial strains depends on properties both of the focal strain and of the surrounding community. In particular, there is a stronger evolutionary response in low-diversity communities, and when the focal species have a larger genome and are initially poorly adapted. We see how community context affects resource usage and detect genetic changes involved in carbon metabolism and inter-specific interaction. The findings demonstrate that adaptation to new environmental conditions should be investigated in the context of interspecific interactions.
Date Issued
2020-02-06
Date Acceptance
2019-12-18
Citation
Nature Communications, 2020, 11
ISSN
2041-1723
Publisher
Nature Research (part of Springer Nature)
Journal / Book Title
Nature Communications
Volume
11
Copyright Statement
© The Author(s) 2020. This article is licensed under a Creative CommonsAttribution 4.0 International License, which permits use, sharing,adaptation, distribution and reproduction in any medium or format, as long as you giveappropriate credit to the original author(s) and the source, provide a link to the CreativeCommons license, and indicate if changes were made. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unlessindicated otherwise in a credit line to the material. If material is not included in thearticle’s Creative Commons license and your intended use is not permitted by statutoryregulation or exceeds the permitted use, you will need to obtain permission directly fromthe copyright holder. To view a copy of this license, visithttp://creativecommons.org/licenses/by/4.0/.
Sponsor
Natural Environment Research Council (NERC)
Grant Number
NE/K006215/1
Publication Status
Published
Article Number
ARTN 754
Date Publish Online
2020-02-06