A neuroprotective astrocyte state is induced by neuronal signal EphB1 but fails in ALS models
Author(s)
Type
Journal Article
Abstract
Astrocyte responses to neuronal injury may be beneficial or detrimental to neuronal recovery, but the mechanisms that determine these different responses are poorly understood. Here we show that ephrin type-B receptor 1 (EphB1) is upregulated in injured motor neurons, which in turn can activate astrocytes through ephrin-B1-mediated stimulation of signal transducer and activator of transcription-3 (STAT3). Transcriptional analysis shows that EphB1 induces a protective and anti-inflammatory signature in astrocytes, partially linked to the STAT3 network. This is distinct from the response evoked by interleukin (IL)-6 that is known to induce both pro inflammatory and anti-inflammatory processes. Finally, we demonstrate that the EphB1–ephrin-B1 pathway is disrupted in human stem cell derived astrocyte and mouse models of amyotrophic lateral sclerosis (ALS). Our work identifies an early neuronal help-me signal that activates a neuroprotective astrocytic response, which fails in ALS, and therefore represents an attractive therapeutic target.
Date Issued
2017-10-27
Date Acceptance
2017-09-06
Citation
NATURE COMMUNICATIONS, 2017, 8
ISSN
2041-1723
Publisher
NATURE PUBLISHING GROUP
Journal / Book Title
NATURE COMMUNICATIONS
Volume
8
Copyright Statement
© 2017 The Author(s). Open Access. This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article
’
s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article
’
s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit
http://creativecommons.org/
licenses/by/4.0/.
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article
’
s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article
’
s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit
http://creativecommons.org/
licenses/by/4.0/.
Sponsor
EDMOND J. SAFRA FOUNDATION
Identifier
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000413833000008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
Subjects
Science & Technology
Multidisciplinary Sciences
Science & Technology - Other Topics
AMYOTROPHIC-LATERAL-SCLEROSIS
FACIAL MOTOR NUCLEUS
SPINAL-CORD-INJURY
REACTIVE GLIOSIS
SYNAPSE ELIMINATION
ALZHEIMERS-DISEASE
SCAR FORMATION
INTERLEUKIN-6
ACTIVATION
RECEPTORS
MD Multidisciplinary
Publication Status
Published
Article Number
ARTN 1164