Medication errors during simulated paediatric resuscitations: a prospective, observational human reliability analysis
File(s)e032686.full.pdf (1.5 MB)
Published version
Author(s)
Type
Journal Article
Abstract
Introduction: Medication errors during paediatric resuscitation are thought to be common. However, there is little evidence about the individual process steps that contribute to such medication errors in this context.
Objectives: To describe the incidence, nature and severity of medication errors in simulated paediatric resuscitations, and to employ human reliability analysis to understand the contribution of discrepancies in individual process steps to the occurrence of these errors.
Methods: We conducted a prospective observational study of simulated resuscitations subjected to video micro-analysis, identification of medication errors, severity assessment and human reliability analysis in a large English teaching hospital. Fifteen resuscitation teams of two doctors and two nurses each conducted one of two simulated paediatric resuscitation scenarios.
Results: At least one medication error was observed in every simulated case, and a large magnitude (>25% discrepant) or clinically significant error in 11 of 15 cases. Medication errors were observed in 29% of 180 simulated medication administrations, 40% of which considered to be moderate or severe. These errors were the result of 884 observed discrepancies at a number of steps in the drug ordering, preparation and administration stages of medication use, 8% of which made a major contribution to a resultant medication error. Most errors were introduced by discrepancies during drug preparation and administration.
Conclusions: Medication errors were common with a considerable proportion likely to result in patient harm. There is an urgent need to optimise existing systems and to commission research into new approaches to increase the reliability of human interactions during administration of medication in the paediatric emergency setting.
Objectives: To describe the incidence, nature and severity of medication errors in simulated paediatric resuscitations, and to employ human reliability analysis to understand the contribution of discrepancies in individual process steps to the occurrence of these errors.
Methods: We conducted a prospective observational study of simulated resuscitations subjected to video micro-analysis, identification of medication errors, severity assessment and human reliability analysis in a large English teaching hospital. Fifteen resuscitation teams of two doctors and two nurses each conducted one of two simulated paediatric resuscitation scenarios.
Results: At least one medication error was observed in every simulated case, and a large magnitude (>25% discrepant) or clinically significant error in 11 of 15 cases. Medication errors were observed in 29% of 180 simulated medication administrations, 40% of which considered to be moderate or severe. These errors were the result of 884 observed discrepancies at a number of steps in the drug ordering, preparation and administration stages of medication use, 8% of which made a major contribution to a resultant medication error. Most errors were introduced by discrepancies during drug preparation and administration.
Conclusions: Medication errors were common with a considerable proportion likely to result in patient harm. There is an urgent need to optimise existing systems and to commission research into new approaches to increase the reliability of human interactions during administration of medication in the paediatric emergency setting.
Date Issued
2019-11-25
Date Acceptance
2019-10-17
Citation
BMJ Open, 2019, 9 (11), pp.1-13
ISSN
2044-6055
Publisher
BMJ Journals
Start Page
1
End Page
13
Journal / Book Title
BMJ Open
Volume
9
Issue
11
Copyright Statement
© Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. Published by BMJ.
This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.
This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.
Sponsor
National Institute for Health Research
National Institute of Health Research
Imperial College Healthcare NHS Trust- BRC Funding
Imperial College Healthcare NHS Trust- BRC Funding
Identifier
https://bmjopen.bmj.com/content/9/11/e032686
Grant Number
n/a
RDB04 79560
RD207
Subjects
paediatric A&E and ambulatory care
paediatric anaesthesia
paediatrics
1103 Clinical Sciences
1117 Public Health and Health Services
1199 Other Medical and Health Sciences
Publication Status
Published
Date Publish Online
2019-11-25