The role of ocean currents in the temperature selection of plankton: insights from an individual-based model.
File(s)Hellweger_etal2016.pdf (2.21 MB)
Published version
Author(s)
Type
Journal Article
Abstract
Biogeography studies that correlate the observed distribution of organisms to environmental variables are typically based on local conditions. However, in cases with substantial translocation, like planktonic organisms carried by ocean currents, selection may happen upstream and local environmental factors may not be representative of those that shaped the local population. Here we use an individual-based model of microbes in the global surface ocean to explore this effect for temperature. We simulate up to 25 million individual cells belonging to up to 50 species with different temperature optima. Microbes are moved around the globe based on a hydrodynamic model, and grow and die based on local temperature. We quantify the role of currents using the "advective temperature differential" metric, which is the optimum temperature of the most abundant species from the model with advection minus that from the model without advection. This differential depends on the location and can be up to 4°C. Poleward-flowing currents, like the Gulf Stream, generally experience cooling and the differential is positive. We apply our results to three global datasets. For observations of optimum growth temperature of phytoplankton, accounting for the effect of currents leads to a slightly better agreement with observations, but there is large variability and the improvement is not statistically significant. For observed Prochlorococcus ecotype ratios and metagenome nucleotide divergence, accounting for advection improves the correlation significantly, especially in areas with relatively strong poleward or equatorward currents.
Date Issued
2016-12-01
Date Acceptance
2016-11-07
ISSN
1932-6203
Publisher
Public Library of Science
Journal / Book Title
PLOS One
Volume
11
Issue
12
Copyright Statement
©
2016
Hellwege
r et al. This is an open
access
article
distributed
under
the terms
of the
Creative
Commons
Attribution
License (https://creativecommons.org/licenses/by/4.0/),
which
permits
unrestricte
d use, distribu
tion, and
reproduction
in any medium,
provided
the original
author
and source
are credited.
2016
Hellwege
r et al. This is an open
access
article
distributed
under
the terms
of the
Creative
Commons
Attribution
License (https://creativecommons.org/licenses/by/4.0/),
which
permits
unrestricte
d use, distribu
tion, and
reproduction
in any medium,
provided
the original
author
and source
are credited.
Identifier
http://www.ncbi.nlm.nih.gov/pubmed/27907181
PONE-D-16-33731
Subjects
General Science & Technology
MD Multidisciplinary
Publication Status
Published
Coverage Spatial
United States
Article Number
e0167010