Rapid flow diagnostics for prototyping of reservoir concepts and models for subsurface CO2 storage
File(s)1-s2.0-S1750583623000257-main.pdf (12.59 MB)
Published version
Author(s)
Type
Journal Article
Abstract
Sketch-based interface and modelling is an approach to reservoir modelling that allows rapid and intuitive creation of 3D reservoir models to test and evaluate geological concepts and hypotheses and thus explore the impact of geological uncertainty on reservoir behaviour. A key advantage of such modelling is the quick creation and quantitative evaluation of reservoir model prototypes. Flow diagnostics capture key aspects of reservoir flow behaviour under simplified physical conditions that enable the rapid solution of the governing equations, and are essential for such quantitative evaluation. In this paper, we demonstrate a novel and highly efficient implementation of a flow diagnostics framework, illustrated with applications to geological storage of CO2. Our implementation permits ‘on-the-fly’ estimation of the key reservoir properties that control CO2 migration and storage during the active injection period when viscous forces dominate. The results substantially improve the efficiency of traditional reservoir modelling and simulation workflows by highlighting key reservoir uncertainties that need to be evaluated in subsequent full-physics reservoir simulations that account for the complex interplay of viscous, gravity, and capillary forces.
The methods are implemented in the open-source Rapid Reservoir Modelling software, which includes a simple to use graphical user interface with no steep learning curve. We present proof-of-concept studies of the new flow diagnostics implementation to investigate the CO2 storage potential of sketched 3D models of shallow marine sandstone tongues and deep water slope channels.
The methods are implemented in the open-source Rapid Reservoir Modelling software, which includes a simple to use graphical user interface with no steep learning curve. We present proof-of-concept studies of the new flow diagnostics implementation to investigate the CO2 storage potential of sketched 3D models of shallow marine sandstone tongues and deep water slope channels.
Date Issued
2023-03
Date Acceptance
2023-02-02
Citation
International Journal of Greenhouse Gas Control, 2023, 124, pp.1-16
ISSN
1750-5836
Publisher
Elsevier
Start Page
1
End Page
16
Journal / Book Title
International Journal of Greenhouse Gas Control
Volume
124
Copyright Statement
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
License URL
Identifier
https://www.sciencedirect.com/science/article/pii/S1750583623000257
Publication Status
Published
Article Number
103855
Date Publish Online
2023-02-10