Transmission of alpha-synuclein-containing erythrocyte-derived extracellular vesicles across the blood-brain barrier via adsorptive mediated transcytosis: another mechanism for initiation and progression of Parkinson's disease?
File(s)s40478-017-0470-4.pdf (2.26 MB)
Published version
Author(s)
Type
Journal Article
Abstract
Parkinson’s disease (PD) pathophysiology develops in part from the formation, transmission, and aggregation of toxic species of the protein α-synuclein (α-syn). Recent evidence suggests that extracellular vesicles (EVs) may play a vital role in the transport of toxic α-syn between brain regions. Moreover, increasing evidence has highlighted the participation of peripheral molecules, particularly inflammatory species, which may influence or exacerbate the development of PD-related changes to the central nervous system (CNS), although detailed characterization of these species remains to be completed. Despite these findings, little attention has been devoted to erythrocytes, which contain α-syn concentrations ~1000-fold higher than the cerebrospinal fluid, as a source of potentially pathogenic α-syn. Here, we demonstrate that erythrocytes produce α-syn-rich EVs, which can cross the BBB, particularly under inflammatory conditions provoked by peripheral administration of lipopolysaccharide. This transport likely occurs via adsorptive-mediated transcytosis, with EVs that transit the BBB co-localizing with brain microglia. Examination of microglial reactivity upon exposure to α-syn-containing erythrocyte EVs in vitro and in vivo revealed that uptake provoked an increase in microglial inflammatory responses. EVs derived from the erythrocytes of PD patients elicited stronger responses than did those of control subjects, suggesting that inherent characteristics of EVs arising in the periphery might contribute to, or even initiate, CNS α-syn-related pathology. These results provide new insight into the mechanisms by which the brain and periphery communicate throughout the process of synucleinopathy pathogenesis.
Date Issued
2017-09-13
Date Acceptance
2017-08-24
Citation
Acta Neuropathologica Communications, 2017, 5 (1)
ISSN
2051-5960
Publisher
BioMed Central
Journal / Book Title
Acta Neuropathologica Communications
Volume
5
Issue
1
Copyright Statement
© 2017 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Identifier
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000410807900001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
Subjects
Science & Technology
Life Sciences & Biomedicine
Neurosciences
Neurosciences & Neurology
Extracellular vesicles
Blood-brain barrier
Alpha-synuclein
Parkinson's disease
Inflammation
Microglia
HEPARAN-SULFATE PROTEOGLYCANS
NADPH OXIDASE
EXOSOMES
MICROGLIA
CELLS
LIPOPOLYSACCHARIDE
NEUROINFLAMMATION
PATHOLOGY
MODEL
MICE
Publication Status
Published
Article Number
71
Date Publish Online
2017-09-13