The slow-scale linear noise approximation: an accurate, reduced stochastic description of biochemical networks under timescale separation conditions
Author(s)
Thomas, P
Straube, AV
Grima, R
Type
Journal Article
Abstract
BACKGROUND: It is well known that the deterministic dynamics of biochemical reaction networks can be more easily studied if timescale separation conditions are invoked (the quasi-steady-state assumption). In this case the deterministic dynamics of a large network of elementary reactions are well described by the dynamics of a smaller network of effective reactions. Each of the latter represents a group of elementary reactions in the large network and has associated with it an effective macroscopic rate law. A popular method to achieve model reduction in the presence of intrinsic noise consists of using the effective macroscopic rate laws to heuristically deduce effective probabilities for the effective reactions which then enables simulation via the stochastic simulation algorithm (SSA). The validity of this heuristic SSA method is a priori doubtful because the reaction probabilities for the SSA have only been rigorously derived from microscopic physics arguments for elementary reactions. RESULTS: We here obtain, by rigorous means and in closed-form, a reduced linear Langevin equation description of the stochastic dynamics of monostable biochemical networks in conditions characterized by small intrinsic noise and timescale separation. The slow-scale linear noise approximation (ssLNA), as the new method is called, is used to calculate the intrinsic noise statistics of enzyme and gene networks. The results agree very well with SSA simulations of the non-reduced network of elementary reactions. In contrast the conventional heuristic SSA is shown to overestimate the size of noise for Michaelis-Menten kinetics, considerably under-estimate the size of noise for Hill-type kinetics and in some cases even miss the prediction of noise-induced oscillations. CONCLUSIONS: A new general method, the ssLNA, is derived and shown to correctly describe the statistics of intrinsic noise about the macroscopic concentrations under timescale separation conditions. The ssLNA provides a simple and accurate means of performing stochastic model reduction and hence it is expected to be of widespread utility in studying the dynamics of large noisy reaction networks, as is common in computational and systems biology.
Date Issued
2012-05-14
Date Acceptance
2012-03-13
Citation
BMC Systems Biology, 2012, 6
ISSN
1752-0509
Publisher
BioMed Central
Journal / Book Title
BMC Systems Biology
Volume
6
Copyright Statement
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
License URL
Subjects
Biocatalysis
Feedback, Physiological
Gene Regulatory Networks
Kinetics
Linear Models
Metabolic Networks and Pathways
Models, Biological
Stochastic Processes
Bioinformatics
1199 Other Medical And Health Sciences
Publication Status
Published
Article Number
39