MEMS micro-contact printing engines
Author(s)
Choonee, Kaushal R V
Type
Thesis or dissertation
Abstract
This thesis investigates micro-contact printing (µCP) engines using micro-electro-mechanical
systems (MEMS). Such engines are self-contained and do not require further optical
alignment and precision manipulation equipment. Hence they provide a low-cost and
accessible method of multilevel surface patterning with sub-micron resolution. Applications
include the field of biotechnology where the placement of biological ligands at well
controlled locations on substrates is often required for biological assays, cell studies and
manipulation, or for the fabrication of biosensors.
A miniaturised silicon µCP engine is designed and fabricated using a wafer-scale MEMS
fabrication process and single level and bi-level µCP are successfully demonstrated. The
performance of the engine is fully characterised and two actuation modes, mechanical and
electrostatic, are investigated. In addition, a novel method of integrating the stamp material
into the MEMS process flow by spray coating is reported.
A second µCP engine formed by wafer-scale replica moulding of a polymer is developed to
further drive down cost and complexity. This system carries six complementary patterns and
allows six-level µCP with a layer-to-layer accuracy of 10 µm over a 5 mm x 5 mm area
without the use of external aligning equipment. This is the first such report of aligned
multilevel µCP.
Lastly, the integration of the replica moulded engine with a hydraulic drive for controlled
actuation is investigated. This approach is promising and proof of concept has been provided
for single-level patterning.
systems (MEMS). Such engines are self-contained and do not require further optical
alignment and precision manipulation equipment. Hence they provide a low-cost and
accessible method of multilevel surface patterning with sub-micron resolution. Applications
include the field of biotechnology where the placement of biological ligands at well
controlled locations on substrates is often required for biological assays, cell studies and
manipulation, or for the fabrication of biosensors.
A miniaturised silicon µCP engine is designed and fabricated using a wafer-scale MEMS
fabrication process and single level and bi-level µCP are successfully demonstrated. The
performance of the engine is fully characterised and two actuation modes, mechanical and
electrostatic, are investigated. In addition, a novel method of integrating the stamp material
into the MEMS process flow by spray coating is reported.
A second µCP engine formed by wafer-scale replica moulding of a polymer is developed to
further drive down cost and complexity. This system carries six complementary patterns and
allows six-level µCP with a layer-to-layer accuracy of 10 µm over a 5 mm x 5 mm area
without the use of external aligning equipment. This is the first such report of aligned
multilevel µCP.
Lastly, the integration of the replica moulded engine with a hydraulic drive for controlled
actuation is investigated. This approach is promising and proof of concept has been provided
for single-level patterning.
Date Issued
2010-11
Date Awarded
2011-04
Advisor
Syms, Richard
Creator
Choonee, Kaushal R V
Publisher Department
Electrical and Electronic Engineering
Publisher Institution
Imperial College London
Qualification Level
Doctoral
Qualification Name
Doctor of Philosophy (PhD)