Hyper- and hypo- nutrition studies of the hepatic transcriptome and epigenome suggest that PPAR alpha regulates anaerobic glycolysis
File(s)s41598-017-00267-9.pdf (2.71 MB)
Published version
Author(s)
Type
Journal Article
Abstract
Diet plays a crucial role in shaping human health and disease. Diets promoting obesity and insulin resistance can lead to severe metabolic diseases, while calorie-restricted (CR) diets can improve health and extend lifespan. In this work, we fed mice either a chow diet (CD), a 16 week high-fat diet (HFD), or a CR diet to compare and contrast the effects of these diets on mouse liver biology. We collected transcriptomic and epigenomic datasets from these mice using RNA-Seq and DNase-Seq. We found that both CR and HFD induce extensive transcriptional changes, in some cases altering the same genes in the same direction. We used our epigenomic data to infer transcriptional regulatory proteins bound near these genes that likely influence their expression levels. In particular, we found evidence for critical roles played by PPARα and RXRα. We used ChIP-Seq to profile the binding locations for these factors in HFD and CR livers. We found extensive binding of PPARα near genes involved in glycolysis/gluconeogenesis and uncovered a role for this factor in regulating anaerobic glycolysis. Overall, we generated extensive transcriptional and epigenomic datasets from livers of mice fed these diets and uncovered new functions and gene targets for PPARα.
Date Issued
2017-03-14
Date Acceptance
2017-02-14
Citation
SCIENTIFIC REPORTS, 2017, 7 (1)
ISSN
2045-2322
Publisher
NATURE PUBLISHING GROUP
Journal / Book Title
SCIENTIFIC REPORTS
Volume
7
Issue
1
Copyright Statement
© 2017 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License. The images
or other third party material in this article are included in the article’s Creative Commons license,
unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this
license, visit
http://creativecommons.org/licenses/by/4.0/
or other third party material in this article are included in the article’s Creative Commons license,
unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this
license, visit
http://creativecommons.org/licenses/by/4.0/
Identifier
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000396865400003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
Subjects
Science & Technology
Multidisciplinary Sciences
Science & Technology - Other Topics
ACTIVATED RECEPTOR-ALPHA
FATTY LIVER-DISEASE
INSULIN-RESISTANCE
CALORIE RESTRICTION
GLUCOSE-METABOLISM
SIGNALING PATHWAY
GENE-EXPRESSION
BINDING-SITES
RNA-SEQ
IN-VIVO
Publication Status
Published
Article Number
ARTN 174
Date Publish Online
2017-03-14