Associations between polygenic risk score and COVID-19 susceptibility and severity across ethnic groups: UK biobank analysis
File(s)s12920-023-01584-x.pdf (1.94 MB)
Published version
Author(s)
Farooqi, Raabia
Zhang, Weihua
Kooner, Jaspal
Type
Journal Article
Abstract
Background
COVID-19 manifests with huge heterogeneity in susceptibility and severity outcomes. UK Black Asian and Minority Ethnic (BAME) groups have demonstrated disproportionate burdens. Some variability remains unexplained, suggesting potential genetic contribution. Polygenic Risk Scores (PRS) can determine genetic predisposition to disease based on Single Nucleotide Polymorphisms (SNPs) within the genome. COVID-19 PRS analyses within non-European samples are extremely limited. We applied a multi-ethnic PRS to a UK-based cohort to understand genetic contribution to COVID-19 variability.
Methods
We constructed two PRS for susceptibility and severity outcomes based on leading risk-variants from the COVID-19 Host Genetics Initiative. Scores were applied to 447,382 participants from the UK-Biobank. Associations with COVID-19 outcomes were assessed using binary logistic regression and discriminative power was validated using incremental area under receiver operating curve (ΔAUC). Variance explained was compared between ethnic groups via incremental pseudo-R2 (ΔR2).
Results
Compared to those at low genetic risk, those at high risk had a significantly greater risk of severe COVID-19 for White (odds ratio [OR] 1.57, 95% confidence interval [CI] 1.42–1.74), Asian (OR 2.88, 95% CI 1.63–5.09) and Black (OR 1.98, 95% CI 1.11–3.53) ethnic groups. Severity PRS performed best within Asian (ΔAUC 0.9%, ΔR2 0.98%) and Black (ΔAUC 0.6%, ΔR2 0.61%) cohorts. For susceptibility, higher genetic risk was significantly associated with COVID-19 infection risk for the White cohort (OR 1.31, 95% CI 1.26–1.36), but not for Black or Asian groups.
Conclusions
Significant associations between PRS and COVID-19 outcomes were elicited, establishing a genetic basis for variability in COVID-19. PRS showed utility in identifying high-risk individuals. The multi-ethnic approach allowed applicability of PRS to diverse populations, with the severity model performing well within Black and Asian cohorts. Further studies with larger sample sizes of non-White samples are required to increase statistical power and better assess impacts within BAME populations.
COVID-19 manifests with huge heterogeneity in susceptibility and severity outcomes. UK Black Asian and Minority Ethnic (BAME) groups have demonstrated disproportionate burdens. Some variability remains unexplained, suggesting potential genetic contribution. Polygenic Risk Scores (PRS) can determine genetic predisposition to disease based on Single Nucleotide Polymorphisms (SNPs) within the genome. COVID-19 PRS analyses within non-European samples are extremely limited. We applied a multi-ethnic PRS to a UK-based cohort to understand genetic contribution to COVID-19 variability.
Methods
We constructed two PRS for susceptibility and severity outcomes based on leading risk-variants from the COVID-19 Host Genetics Initiative. Scores were applied to 447,382 participants from the UK-Biobank. Associations with COVID-19 outcomes were assessed using binary logistic regression and discriminative power was validated using incremental area under receiver operating curve (ΔAUC). Variance explained was compared between ethnic groups via incremental pseudo-R2 (ΔR2).
Results
Compared to those at low genetic risk, those at high risk had a significantly greater risk of severe COVID-19 for White (odds ratio [OR] 1.57, 95% confidence interval [CI] 1.42–1.74), Asian (OR 2.88, 95% CI 1.63–5.09) and Black (OR 1.98, 95% CI 1.11–3.53) ethnic groups. Severity PRS performed best within Asian (ΔAUC 0.9%, ΔR2 0.98%) and Black (ΔAUC 0.6%, ΔR2 0.61%) cohorts. For susceptibility, higher genetic risk was significantly associated with COVID-19 infection risk for the White cohort (OR 1.31, 95% CI 1.26–1.36), but not for Black or Asian groups.
Conclusions
Significant associations between PRS and COVID-19 outcomes were elicited, establishing a genetic basis for variability in COVID-19. PRS showed utility in identifying high-risk individuals. The multi-ethnic approach allowed applicability of PRS to diverse populations, with the severity model performing well within Black and Asian cohorts. Further studies with larger sample sizes of non-White samples are required to increase statistical power and better assess impacts within BAME populations.
Date Issued
2023-06-30
Date Acceptance
2023-06-16
Citation
BMC Medical Genomics, 2023, 16, pp.1-15
ISSN
1755-8794
Publisher
BMC
Start Page
1
End Page
15
Journal / Book Title
BMC Medical Genomics
Volume
16
Copyright Statement
© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativeco
mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativeco
mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
License URL
Identifier
https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-023-01584-x
Publication Status
Published
Article Number
150
Date Publish Online
2023-06-30