Optimal method for metabolic tumour volume assessment of cervical cancers with inter-observer agreement on [18F]-fluoro-deoxy-glucose positron emission tomography with computed tomography
File(s)
Author(s)
Type
Journal Article
Abstract
Purpose
Cervical cancer metabolic tumour volume (MTV) derived from [18F]-FDG PET/CT has a role in prognostication and therapy planning. There is no standard method of outlining MTV on [18F]-FDG PET/CT. The aim of this study was to assess the optimal method to outline primary cervical tumours on [18F]-FDG PET/CT using MRI-derived tumour volumes as the reference standard.
Methods
81 consecutive cervical cancer patients with pre-treatment staging MRI and [18F]-FDG PET/CT imaging were included. MRI volumes were compared with different PET segmentation methods. Method 1 measured MTVs at different SUVmax thresholds ranging from 20 to 60% (MTV20-MTV60) with bladder masking and manual adjustment when required. Method 2 created an isocontour around the tumour prior to different SUVmax thresholds being applied. Method 3 used an automated gradient method. Inter-observer agreement of MTV, following manual adjustment when required, was recorded.
Results
For method 1, the MTV25 and MTV30 were closest to the MRI volumes for both readers (mean percentage change from MRI volume of 2.9% and 13.4% for MTV25 and − 13.1% and − 2.0% for MTV30 for readers 1 and 2). 70% of lesions required manual adjustment at MTV25 compared with 45% at MTV30. There was excellent inter-observer agreement between MTV30 to MTV60 (ICC ranged from 0.898–0.976 with narrow 95% confidence intervals (CIs)) and moderate agreement at lower thresholds (ICC estimates of 0.534 and 0.617, respectively for the MTV20 and MTV25 with wide 95% CIs). Bladder masking was performed in 86% of cases overall. For method 2, excellent correlation was demonstrated at MTV25 and MTV30 (mean % change from MRI volume of −3.9% and − 8.6% for MTV25 and − 16.9% and 19% for MTV30 for readers 1 and 2, respectively). This method also demonstrated excellent ICC across all thresholds with no manual adjustment. Method 3 demonstrated excellent ICC of 0.96 (95% CI 0.94–0.97) but had a mean percentage difference from the MRI volume of − 19.1 and − 18.2% for readers 1 and 2, respectively. 21% required manual adjustment for both readers.
Conclusion
MTV30 provides the optimal correlation with MRI volume taking into consideration the excellent inter-reader agreement and less requirement for manual adjustment.
Cervical cancer metabolic tumour volume (MTV) derived from [18F]-FDG PET/CT has a role in prognostication and therapy planning. There is no standard method of outlining MTV on [18F]-FDG PET/CT. The aim of this study was to assess the optimal method to outline primary cervical tumours on [18F]-FDG PET/CT using MRI-derived tumour volumes as the reference standard.
Methods
81 consecutive cervical cancer patients with pre-treatment staging MRI and [18F]-FDG PET/CT imaging were included. MRI volumes were compared with different PET segmentation methods. Method 1 measured MTVs at different SUVmax thresholds ranging from 20 to 60% (MTV20-MTV60) with bladder masking and manual adjustment when required. Method 2 created an isocontour around the tumour prior to different SUVmax thresholds being applied. Method 3 used an automated gradient method. Inter-observer agreement of MTV, following manual adjustment when required, was recorded.
Results
For method 1, the MTV25 and MTV30 were closest to the MRI volumes for both readers (mean percentage change from MRI volume of 2.9% and 13.4% for MTV25 and − 13.1% and − 2.0% for MTV30 for readers 1 and 2). 70% of lesions required manual adjustment at MTV25 compared with 45% at MTV30. There was excellent inter-observer agreement between MTV30 to MTV60 (ICC ranged from 0.898–0.976 with narrow 95% confidence intervals (CIs)) and moderate agreement at lower thresholds (ICC estimates of 0.534 and 0.617, respectively for the MTV20 and MTV25 with wide 95% CIs). Bladder masking was performed in 86% of cases overall. For method 2, excellent correlation was demonstrated at MTV25 and MTV30 (mean % change from MRI volume of −3.9% and − 8.6% for MTV25 and − 16.9% and 19% for MTV30 for readers 1 and 2, respectively). This method also demonstrated excellent ICC across all thresholds with no manual adjustment. Method 3 demonstrated excellent ICC of 0.96 (95% CI 0.94–0.97) but had a mean percentage difference from the MRI volume of − 19.1 and − 18.2% for readers 1 and 2, respectively. 21% required manual adjustment for both readers.
Conclusion
MTV30 provides the optimal correlation with MRI volume taking into consideration the excellent inter-reader agreement and less requirement for manual adjustment.
Date Issued
2020-12-11
Date Acceptance
2020-11-24
Citation
European Journal of Nuclear Medicine and Molecular Imaging, 2020, pp.1-15
ISSN
0340-6997
Publisher
Springer
Start Page
1
End Page
15
Journal / Book Title
European Journal of Nuclear Medicine and Molecular Imaging
Copyright Statement
© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Sponsor
Imperial College Healthcare NHS Trust- BRC Funding
Medical Research Council
Imperial College Healthcare NHS Trust- BRC Funding
Cancer Research UK
Identifier
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000597772900001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
Grant Number
RDC04
RDC04 79560
25147
Subjects
Science & Technology
Life Sciences & Biomedicine
Radiology, Nuclear Medicine & Medical Imaging
Cervix
FDG
PET
CT
MTV
Tumour segmentation
TOTAL LESION GLYCOLYSIS
DIFFUSION-WEIGHTED MRI
F-18-FDG PET/CT
FDG PET/CT
PROGNOSTIC VALUE
ROI DEFINITION
PARAMETERS
RECOMMENDATIONS
BRACHYTHERAPY
QUANTIFICATION
Publication Status
Published online
Date Publish Online
2020-12-11