Data fusion for Uncertainty Quantification with Non-intrusive Polynomial Chaos
File(s)Data_Fusion_for_UQ_with_NIPC 1st review.pdf (602.65 KB)
Accepted version
Author(s)
Pepper, nick
Montomoli, Francesco
sharma, sanjiv
Type
Journal Article
Abstract
This work presents a framework for updating an estimate of a probability distribution, arising from an uncertainty propagation using Non-intrusive Polynomial Chaos (NIPC), with scarce experimental measurements of a Quantity of Interest (QoI). In recent years much work has been directed towards developing methods of combining models of different accuracies in order to propagate uncertainty, but the problem of improving uncertainty propagations by considering evidence from both computational models and experiments has received less attention.
The framework described here uses the Maximum Entropy Principle (MEP) to find an updated, least biased estimate of a probability distribution by maximising the entropy between the original and updated estimates. A constrained optimisation is performed to find the coefficients of a Polynomial Chaos Expansion (PCE) that minimise the Kullback–Leibler (KL) divergence between estimates, while ensuring that the new estimate conforms to constraints imposed by the available experimental measurements of the QoI. In this work a novel constraint is used, based upon the Dvoretzky–Kiefer–Wolfowitz inequality and the Massart bound (DKWM), as opposed to the more commonly used moment-based constraints. Such a constraint allows scarce experimental data to be used in informing the updated estimate of the probability distribution.
The framework described here uses the Maximum Entropy Principle (MEP) to find an updated, least biased estimate of a probability distribution by maximising the entropy between the original and updated estimates. A constrained optimisation is performed to find the coefficients of a Polynomial Chaos Expansion (PCE) that minimise the Kullback–Leibler (KL) divergence between estimates, while ensuring that the new estimate conforms to constraints imposed by the available experimental measurements of the QoI. In this work a novel constraint is used, based upon the Dvoretzky–Kiefer–Wolfowitz inequality and the Massart bound (DKWM), as opposed to the more commonly used moment-based constraints. Such a constraint allows scarce experimental data to be used in informing the updated estimate of the probability distribution.
Date Issued
2021-02-01
Date Acceptance
2020-11-10
Citation
Computer Methods in Applied Mechanics and Engineering, 2021, 374
ISSN
0045-7825
Publisher
Elsevier
Journal / Book Title
Computer Methods in Applied Mechanics and Engineering
Volume
374
Copyright Statement
© 2020 Elsevier B.V. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/
Subjects
01 Mathematical Sciences
09 Engineering
Applied Mathematics
Publication Status
Published
Article Number
ARTN 113577
Date Publish Online
2020-11-30