Explainable artificial intelligence to identify follicles that optimize clinical outcomes during assisted conception
File(s)s41467-024-55301-y.pdf (1.11 MB)
Published version
Author(s)
Type
Journal Article
Abstract
Infertility affects one-in-six couples, often necessitating in vitro fertilization treatment (IVF). IVF generates complex data, which can challenge the utilization of the full richness of data during decision-making, leading to reliance on simple ‘rules-of-thumb’. Machine learning techniques are well-suited to analyzing complex data to provide data-driven recommendations to improve decision-making. In this multi-center study (n = 19,082 treatment-naive female patients), including 11 European IVF centers, we harnessed explainable artificial intelligence to identify follicle sizes that contribute most to relevant downstream clinical outcomes. We found that intermediately-sized follicles were most important to the number of mature oocytes subsequently retrieved. Maximizing this proportion of follicles by the end of ovarian stimulation was associated with improved live birth rates. Our data suggests that larger mean follicle sizes, especially those >18 mm, were associated with premature progesterone elevation by the end of ovarian stimulation and a negative impact on live birth rates with fresh embryo transfer. These data highlight the potential of computer technologies to aid in the personalization of IVF to optimize clinical outcomes pending future prospective validation.
Date Issued
2025-01-08
Date Acceptance
2024-12-06
Citation
Nature Communications, 2025, 16
ISSN
2041-1723
Publisher
Nature Portfolio
Journal / Book Title
Nature Communications
Volume
16
Copyright Statement
© The Author(s) 2025 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
License URL
Identifier
https://www.nature.com/articles/s41467-024-55301-y
Publication Status
Published
Article Number
296
Date Publish Online
2025-01-08