Investigating the influence of WEDM process parameters in machining of hybrid aluminium composites
File(s)2633366x20963137.pdf (1.11 MB)
Published version
Author(s)
Type
Journal Article
Abstract
Aluminum based composites are widely used in various engineering applications. Though the processing of these materials is easy, it requires advanced machining techniques to cut the same as it becomes harder after the addition of ceramic reinforcements. The wire electrical discharge machining (WEDM) process is employed for cutting of Al–SiC–B4C hybrid metal matrix composites with the varying machining conditions. The machining factors, namely current (12A–20A), pulse on time (100μs–120 μs), the wire feed rate (6 mm/min – 10 mm/min) and the content of B4C (weight percentage) in the composite are considered for the performance evaluation. A response surface methodology (RSM), the multi-objective optimization technique is adopted for determining the influence of parameters on the machining features like kerf width and cutting speed. The experimental analysis revealed the correlation between the input and output characteristics. The minimum kerf width of 0.271 mm is attained at a wire feed rate of 10 mm/min and current of 12 A. The maximum cutting speed of 4.76 mm/min is achieved at a pulse on time of 110 μs and a wire feed rate of 8 mm/min. The optimum machining condition obtained through RSM method is current of 20 A, pulse on time of 108.6 μs, wire feed rate of 10 mm/min and 5.65% of the B4C content in the composites.
Date Issued
2020-10-15
Date Acceptance
2020-09-09
Citation
Advanced Composites Letters, 2020, 29, pp.1-14
ISSN
2633-366X
Publisher
Sage Publishing Ltd
Start Page
1
End Page
14
Journal / Book Title
Advanced Composites Letters
Volume
29
Copyright Statement
© The Author(s) 2020. Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License
(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without
further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/
open-access-at-sage).
(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without
further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/
open-access-at-sage).
Identifier
https://journals.sagepub.com/doi/10.1177/2633366X20963137
Subjects
Materials
0912 Materials Engineering
Publication Status
Published
Date Publish Online
2020-10-15