Screening for genital chlamydia infection
File(s)
Author(s)
Type
Journal Article
Abstract
Background
Genital infections caused by Chlamydia trachomatis are the most prevalent bacterial sexually transmitted infection worldwide. Screening of sexually active young adults to detect and treat asymptomatic infections might reduce chlamydia transmission and prevent reproductive tract morbidity, particularly pelvic inflammatory disease (PID) in women, which can cause tubal infertility and ectopic pregnancy.
Objectives
To assess the effects and safety of chlamydia screening versus standard care on chlamydia transmission and infection complications in pregnant and non-pregnant women and in men.
Search methods
We searched the Cochrane Sexually Transmitted Infections Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, LILACS, CINAHL, DARE, PsycINFO and Web of Science electronic databases up to 14 February 2016, together with World Health Organization International Clinical Trials Registry (ICTRP) and ClinicalTrials.gov. We also handsearched conference proceedings, contacted trial authors and reviewed the reference lists of retrieved studies.
Selection criteria
Randomised controlled trials (RCTs) in adult women (non-pregnant and pregnant) and men comparing a chlamydia screening intervention with usual care and reporting on a primary outcome (C. trachomatis prevalence, PID in women, epididymitis in men or incidence of preterm delivery). We included non-randomised controlled clinical trials if there were no RCTs for a primary outcome.
Data collection and analysis
Two review authors independently assessed trials for inclusion, extracted data and assessed the risk of bias. We resolved disagreements by consensus or adjudication by a third reviewer. We described results in forest plots and conducted meta-analysis where appropriate using a fixed-effect model to estimate risk ratios (RR with 95% confidence intervals, CI) in intervention vs control groups. We conducted a pre-specified sensitivity analysis of the primary outcome, PID incidence, according to the risks of selection and detection bias.
Main results
We included six trials involving 359,078 adult women and men. One trial was at low risk of bias in all six specific domains assessed. Two trials examined the effect of multiple rounds of chlamydia screening on C. trachomatis transmission. A cluster-controlled trial in women and men in the general population in the Netherlands found no change in chlamydia test positivity after three yearly invitations (intervention 4.1% vs control 4.3%, RR 0.96, 95% CI 0.84 to 1.09, 1 trial, 317,304 participants at first screening invitation, low quality evidence). Uptake of the intervention was low (maximum 16%). A cluster-randomised trial in female sex workers in Peru found a reduction in chlamydia prevalence after four years (adjusted RR 0.72, 95% CI 0.54 to 0.98, 1 trial, 4465 participants, low quality evidence).
Four RCTs examined the effect of chlamydia screening on PID in women 12 months after a single screening offer. In analysis of four trials according to the intention-to-treat principle, the risk of PID was lower in women in intervention than control groups, with little evidence of between-trial heterogeneity (RR 0.68, 95% CI 0.49 to 0.94, I2 7%, 4 trials, 21,686 participants, moderate quality evidence). In a sensitivity analysis, the estimated effect of chlamydia screening in two RCTs at low risk of detection bias (RR 0.80, 95% CI 0.55 to 1.17) was compatible with no effect and was lower than in two RCTs at high or unclear risk of detection bias (RR 0.42, 95% CI 0.22 to 0.83).
The risk of epididymitis in men invited for screening, 12 months after a single screening offer, was 20% lower risk for epididymitis than in those not invited; the confidence interval was wide and compatible with no effect (RR 0.80, 95% CI 0.45 to 1.42, 1 trial, 14,980 participants, very low quality evidence).
We found no RCTs of the effects of chlamydia screening in pregnancy and no trials that measured the harms of chlamydia screening.
Authors' conclusions
Evidence about the effects of screening on C. trachomatis transmission is of low quality because of directness and risk of bias. There is moderate quality evidence that detection and treatment of chlamydia infection can reduce the risk of PID in women at individual level. There is an absence of RCT evidence about the effects of chlamydia screening in pregnancy.
Future RCTs of chlamydia screening interventions should determine the effects of chlamydia screening in pregnancy, of repeated rounds of screening on the incidence of chlamydia-associated PID and chlamydia reinfection in general and high risk populations.
Genital infections caused by Chlamydia trachomatis are the most prevalent bacterial sexually transmitted infection worldwide. Screening of sexually active young adults to detect and treat asymptomatic infections might reduce chlamydia transmission and prevent reproductive tract morbidity, particularly pelvic inflammatory disease (PID) in women, which can cause tubal infertility and ectopic pregnancy.
Objectives
To assess the effects and safety of chlamydia screening versus standard care on chlamydia transmission and infection complications in pregnant and non-pregnant women and in men.
Search methods
We searched the Cochrane Sexually Transmitted Infections Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, LILACS, CINAHL, DARE, PsycINFO and Web of Science electronic databases up to 14 February 2016, together with World Health Organization International Clinical Trials Registry (ICTRP) and ClinicalTrials.gov. We also handsearched conference proceedings, contacted trial authors and reviewed the reference lists of retrieved studies.
Selection criteria
Randomised controlled trials (RCTs) in adult women (non-pregnant and pregnant) and men comparing a chlamydia screening intervention with usual care and reporting on a primary outcome (C. trachomatis prevalence, PID in women, epididymitis in men or incidence of preterm delivery). We included non-randomised controlled clinical trials if there were no RCTs for a primary outcome.
Data collection and analysis
Two review authors independently assessed trials for inclusion, extracted data and assessed the risk of bias. We resolved disagreements by consensus or adjudication by a third reviewer. We described results in forest plots and conducted meta-analysis where appropriate using a fixed-effect model to estimate risk ratios (RR with 95% confidence intervals, CI) in intervention vs control groups. We conducted a pre-specified sensitivity analysis of the primary outcome, PID incidence, according to the risks of selection and detection bias.
Main results
We included six trials involving 359,078 adult women and men. One trial was at low risk of bias in all six specific domains assessed. Two trials examined the effect of multiple rounds of chlamydia screening on C. trachomatis transmission. A cluster-controlled trial in women and men in the general population in the Netherlands found no change in chlamydia test positivity after three yearly invitations (intervention 4.1% vs control 4.3%, RR 0.96, 95% CI 0.84 to 1.09, 1 trial, 317,304 participants at first screening invitation, low quality evidence). Uptake of the intervention was low (maximum 16%). A cluster-randomised trial in female sex workers in Peru found a reduction in chlamydia prevalence after four years (adjusted RR 0.72, 95% CI 0.54 to 0.98, 1 trial, 4465 participants, low quality evidence).
Four RCTs examined the effect of chlamydia screening on PID in women 12 months after a single screening offer. In analysis of four trials according to the intention-to-treat principle, the risk of PID was lower in women in intervention than control groups, with little evidence of between-trial heterogeneity (RR 0.68, 95% CI 0.49 to 0.94, I2 7%, 4 trials, 21,686 participants, moderate quality evidence). In a sensitivity analysis, the estimated effect of chlamydia screening in two RCTs at low risk of detection bias (RR 0.80, 95% CI 0.55 to 1.17) was compatible with no effect and was lower than in two RCTs at high or unclear risk of detection bias (RR 0.42, 95% CI 0.22 to 0.83).
The risk of epididymitis in men invited for screening, 12 months after a single screening offer, was 20% lower risk for epididymitis than in those not invited; the confidence interval was wide and compatible with no effect (RR 0.80, 95% CI 0.45 to 1.42, 1 trial, 14,980 participants, very low quality evidence).
We found no RCTs of the effects of chlamydia screening in pregnancy and no trials that measured the harms of chlamydia screening.
Authors' conclusions
Evidence about the effects of screening on C. trachomatis transmission is of low quality because of directness and risk of bias. There is moderate quality evidence that detection and treatment of chlamydia infection can reduce the risk of PID in women at individual level. There is an absence of RCT evidence about the effects of chlamydia screening in pregnancy.
Future RCTs of chlamydia screening interventions should determine the effects of chlamydia screening in pregnancy, of repeated rounds of screening on the incidence of chlamydia-associated PID and chlamydia reinfection in general and high risk populations.
Date Issued
2016-09-13
Date Acceptance
2016-09-01
Citation
Cochrane Database of Systematic Reviews, 2016, 2016 (9)
ISSN
1469-493X
Publisher
Cochrane Collaboration
Journal / Book Title
Cochrane Database of Systematic Reviews
Volume
2016
Issue
9
Copyright Statement
© 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. This is the peer reviewed version of the following article, which has been published in final form at https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD010866.pub2/full. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
Subjects
Science & Technology
Life Sciences & Biomedicine
Medicine, General & Internal
General & Internal Medicine
RANDOMIZED-CONTROLLED-TRIAL
PELVIC-INFLAMMATORY-DISEASE
SEXUALLY-TRANSMITTED INFECTIONS
TUBAL FACTOR INFERTILITY
GENERAL-PRACTICE
TRACHOMATIS INFECTION
BACTERIAL VAGINOSIS
COST-EFFECTIVENESS
REINFECTION RATES
ECTOPIC PREGNANCY
Publication Status
Published
Article Number
CD010866
Date Publish Online
2016-09-13