Early metabolic markers identify potential targets for the prevention of type 2 diabetes
File(s)s00125-017-4325-0.pdf (638.51 KB)
Published version
Author(s)
Type
Journal Article
Abstract
AIMS/HYPOTHESIS: The aims of this study were to evaluate systematically the predictive power of comprehensive metabolomics profiles in predicting the future risk of type 2 diabetes, and to identify a panel of the most predictive metabolic markers. METHODS: We applied an unbiased systems medicine approach to mine metabolite combinations that provide added value in predicting the future incidence of type 2 diabetes beyond known risk factors. We performed mass spectrometry-based targeted, as well as global untargeted, metabolomics, measuring a total of 568 metabolites, in a Finnish cohort of 543 non-diabetic individuals from the Botnia Prospective Study, which included 146 individuals who progressed to type 2 diabetes by the end of a 10 year follow-up period. Multivariate logistic regression was used to assess statistical associations, and regularised least-squares modelling was used to perform machine learning-based risk classification and marker selection. The predictive performance of the machine learning models and marker panels was evaluated using repeated nested cross-validation, and replicated in an independent French cohort of 1044 individuals including 231 participants who progressed to type 2 diabetes during a 9 year follow-up period in the DESIR (Data from an Epidemiological Study on the Insulin Resistance Syndrome) study. RESULTS: Nine metabolites were negatively associated (potentially protective) and 25 were positively associated with progression to type 2 diabetes. Machine learning models based on the entire metabolome predicted progression to type 2 diabetes (area under the receiver operating characteristic curve, AUC = 0.77) significantly better than the reference model based on clinical risk factors alone (AUC = 0.68; DeLong's p = 0.0009). The panel of metabolic markers selected by the machine learning-based feature selection also significantly improved the predictive performance over the reference model (AUC = 0.78; p = 0.00019; integrated discrimination improvement, IDI = 66.7%). This approach identified novel predictive biomarkers, such as α-tocopherol, bradykinin hydroxyproline, X-12063 and X-13435, which showed added value in predicting progression to type 2 diabetes when combined with known biomarkers such as glucose, mannose and α-hydroxybutyrate and routinely used clinical risk factors. CONCLUSIONS/INTERPRETATION: This study provides a panel of novel metabolic markers for future efforts aimed at the prevention of type 2 diabetes.
Date Issued
2017-06-08
Date Acceptance
2017-05-11
Citation
Diabetologia, 2017, 60 (9), pp.1740-1750
ISSN
0012-186X
Publisher
Springer Verlag
Start Page
1740
End Page
1750
Journal / Book Title
Diabetologia
Volume
60
Issue
9
Copyright Statement
© The Author(s) 2017. Open Access.
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Identifier
https://www.ncbi.nlm.nih.gov/pubmed/28597074
PII: 10.1007/s00125-017-4325-0
Subjects
Biomarkers
Early prediction
Kallikrein–kinin system
Machine learning
Metabolomics
Multivariate models
Prevention
Risk classification
Publication Status
Published
Coverage Spatial
Germany