Electricity generation technologies: Comparison of materials use, energy return on investment, jobs creation and CO2 emissions reduction
File(s)EP_2018_JEPO-D-17-02472_ZKis_NPandya_RKoppelaar_SI.pdf (1.61 MB)
Supporting information
Author(s)
Kis, Z
Pandya, N
Koppelaar, RHEM
Type
Journal Article
Abstract
Abstract Shifting to a low-carbon electricity future requires up-to-date information on the energetic, environmental and socio-economic performance of technologies. Here, we present a novel comprehensive bottom-up process chain framework that is applied to 19 electricity generation technologies, consistently incorporating 12 life-cycle phases from extraction to decommissioning. For each life-cycle phase of each technology the following 4 key metrics were assessed: material consumption, energy return ratios, job requirements and greenhouse gas emissions. We also calculate a novel global electricity to grid average for these metrics and present a metric variability analysis by altering transport distance, load factors, efficiency, and fuel density per technology. This work quantitatively supports model-to-policy frameworks that drive technology selection and investment based on energetic-economic viability, job creation and carbon emission reduction of technologies. The results suggest energetic-economic infeasibility of electricity generation networks with substantial shares of: i) liquefied natural gas transport, ii) long distance transport based hard and brown coal and pipeline natural gas, and iii) low-load factor solar-photovoltaic, concentrated solar power, onshore and offshore wind. Direct sector jobs can be expected to double in renewable-majority scenarios. All combustion-powered technologies without natural (biomass) or artificial carbon capture (fossil fuels) are not compatible with a low carbon electricity generation future.
Date Issued
2018-09-01
Date Acceptance
2018-05-09
Citation
Energy Policy, 2018, 120, pp.144-157
ISSN
0301-4215
Publisher
Elsevier
Start Page
144
End Page
157
Journal / Book Title
Energy Policy
Volume
120
Copyright Statement
© 2018 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/
Identifier
https://www.sciencedirect.com/science/article/pii/S0301421518303239
Subjects
Electricity technology comparison
Net electricity
Electricity generation supply chain
Electricity generation jobs
Electricity generation greenhouse gas emissions
Notes
Abstract Shifting to a low-carbon electricity future requires up-to-date information on the energetic, environmental and socio-economic performance of technologies. Here, we present a novel comprehensive bottom-up process chain framework that is applied to 19 electricity generation technologies, consistently incorporating 12 life-cycle phases from extraction to decommissioning. For each life-cycle phase of each technology the following 4 key metrics were assessed: material consumption, energy return ratios, job requirements and greenhouse gas emissions. We also calculate a novel global electricity to grid average for these metrics and present a metric variability analysis by altering transport distance, load factors, efficiency, and fuel density per technology. This work quantitatively supports model-to-policy frameworks that drive technology selection and investment based on energetic-economic viability, job creation and carbon emission reduction of technologies. The results suggest energetic-economic infeasibility of electricity generation networks with substantial shares of: i) liquefied natural gas transport, ii) long distance transport based hard and brown coal and pipeline natural gas, and iii) low-load factor solar-photovoltaic, concentrated solar power, onshore and offshore wind. Direct sector jobs can be expected to double in renewable-majority scenarios. All combustion-powered technologies without natural (biomass) or artificial carbon capture (fossil fuels) are not compatible with a low carbon electricity generation future.
Publication Status
Published
Date Publish Online
2018-05-26