A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter.
Author(s)
Type
Journal Article
Abstract
An accurate state of charge (SOC) estimation in battery management systems (BMS) is of crucial importance to guarantee the safe and effective operation of automotive batteries. However, the BMS consistently suffers from inaccuracy of SOC estimation. Herein, we propose a SOC estimation approach with both high accuracy and robustness based on an improved extended Kalman filter (IEKF). An equivalent circuit model is established, and the simulated annealing-particle swarm optimization (SA-PSO) algorithm is used for offline parameter identification. Furthermore, improvements have been made with noise adaptation, a fading filter and a linear-nonlinear filtering based on the traditional EKF method, and rigorous mathematical proof has been carried out accordingly. To deal with model mismatch, online parameter identification is achieved by a dual Kalman filter. Finally, various experiments are performed to validate the proposed IEKF. Experimental results show that the IEKF algorithm can reduce the error to 2.94% under dynamic stress test conditions, and robustness analysis is verified with noise interference, hence demonstrating its practicability for extending to state estimation of battery packs applied in real-world operating conditions.
Date Issued
2021-03-11
Date Acceptance
2020-12-21
Citation
Scientific Reports, 2021, 11 (1), pp.1-15
ISSN
2045-2322
Publisher
Nature Publishing Group
Start Page
1
End Page
15
Journal / Book Title
Scientific Reports
Volume
11
Issue
1
Copyright Statement
© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
License URL
Identifier
https://www.ncbi.nlm.nih.gov/pubmed/33707575
PII: 10.1038/s41598-021-84729-1
Publication Status
Published online
Coverage Spatial
England
Date Publish Online
2021-03-11