Enabling technologies for precise aerial manufacturing with unmanned aerial vehicles
File(s)
Author(s)
Chermprayong, Pisak
Type
Thesis or dissertation
Abstract
The construction industry is currently experiencing a revolution with automation techniques
such as additive manufacturing and robot-enabled construction. Additive Manufacturing (AM)
is a key technology that can o er productivity improvement in the construction industry by
means of o -site prefabrication and on-site construction with automated systems. The key
bene t is that building elements can be fabricated with less materials and higher design freedom
compared to traditional manual methods.
O -site prefabrication with AM has been investigated for some time already, but it has limitations
in terms of logistical issues of components transportation and due to its lack of design
exibility on-site. On-site construction with automated systems, such as static gantry systems
and mobile ground robots performing AM tasks, can o er additional bene ts over o -site
prefabrication, but it needs further research before it will become practical and economical.
Ground-based automated construction systems also have the limitation that they cannot extend
the construction envelope beyond their physical size. The solution of using aerial robots
to liberate the process from the constrained construction envelope has been suggested, albeit
with technological challenges including precision of operation, uncertainty in environmental
interaction and energy e ciency.
This thesis investigates methods of precise manufacturing with aerial robots. In particular,
this work focuses on stabilisation mechanisms and origami-based structural elements that allow
aerial robots to operate in challenging environments. An integrated aerial self-aligning delta
manipulator has been utilised to increase the positioning accuracy of the aerial robots, and
a Material Extrusion (ME) process has been developed for Aerial Additive Manufacturing
(AAM). A 28-layer tower has been additively manufactured by aerial robots to demonstrate the
feasibility of AAM. Rotorigami and a bioinspired landing mechanism demonstrate their abilities
to overcome uncertainty in environmental interaction with impact protection capabilities and
improved robustness for UAV. Design principles using tensile anchoring methods have been
explored, enabling low-power operation and explores possibility of low-power aerial stabilisation.
The results demonstrate that precise aerial manufacturing needs to consider not only just the
robotic aspects, such as
ight control algorithms and mechatronics, but also material behaviour
and environmental interaction as factors for its success.
such as additive manufacturing and robot-enabled construction. Additive Manufacturing (AM)
is a key technology that can o er productivity improvement in the construction industry by
means of o -site prefabrication and on-site construction with automated systems. The key
bene t is that building elements can be fabricated with less materials and higher design freedom
compared to traditional manual methods.
O -site prefabrication with AM has been investigated for some time already, but it has limitations
in terms of logistical issues of components transportation and due to its lack of design
exibility on-site. On-site construction with automated systems, such as static gantry systems
and mobile ground robots performing AM tasks, can o er additional bene ts over o -site
prefabrication, but it needs further research before it will become practical and economical.
Ground-based automated construction systems also have the limitation that they cannot extend
the construction envelope beyond their physical size. The solution of using aerial robots
to liberate the process from the constrained construction envelope has been suggested, albeit
with technological challenges including precision of operation, uncertainty in environmental
interaction and energy e ciency.
This thesis investigates methods of precise manufacturing with aerial robots. In particular,
this work focuses on stabilisation mechanisms and origami-based structural elements that allow
aerial robots to operate in challenging environments. An integrated aerial self-aligning delta
manipulator has been utilised to increase the positioning accuracy of the aerial robots, and
a Material Extrusion (ME) process has been developed for Aerial Additive Manufacturing
(AAM). A 28-layer tower has been additively manufactured by aerial robots to demonstrate the
feasibility of AAM. Rotorigami and a bioinspired landing mechanism demonstrate their abilities
to overcome uncertainty in environmental interaction with impact protection capabilities and
improved robustness for UAV. Design principles using tensile anchoring methods have been
explored, enabling low-power operation and explores possibility of low-power aerial stabilisation.
The results demonstrate that precise aerial manufacturing needs to consider not only just the
robotic aspects, such as
ight control algorithms and mechatronics, but also material behaviour
and environmental interaction as factors for its success.
Version
Open Access
Date Issued
2019-04
Date Awarded
2019-09
Copyright Statement
Creative Commons Attribution NonCommercial Licence
Advisor
Kovac, Mirko
Sponsor
Thai Government Scholarchip
Publisher Department
Aeronautics
Publisher Institution
Imperial College London
Qualification Level
Doctoral
Qualification Name
Doctor of Philosophy (PhD)