Adaptive control for time-varying systems: congelation and interconnection
File(s)
Author(s)
Chen, Kaiwen
Type
Thesis or dissertation
Abstract
This thesis investigates the adaptive control problem for systems with time-varying parameters. Two concepts are developed and exploited throughout the thesis: the congelation of variables, and the active nodes.
The thesis first revisits the classical adaptive schemes and explains the challenges brought by the presence of time-varying parameters. Then, the concept of congelation of variables is introduced and its use in combinations with passivity-based, immersion-and-invariant, and identification-based adaptive schemes are discussed. As the congelation of variables method introduces additional interconnection in the closed-loop system, a framework for small-gain-like control synthesis for interconnected systems is needed.\vspace{2ex}
To this end, the thesis proceeds by introducing the notion of active nodes. This is instrumental to show that as long as a class of node systems that possess adjustable damping parameters, that is the active nodes, satisfy certain graph-theoretic conditions, the desired small-gain-like property for the overall system can be enforced via tuning these adjustable parameters. Such conditions for interconnected systems with quadratic, nonlinear, and linearly parametrized supply rates, respectively, are elaborated from the analysis and control synthesis perspectives. The placement and the computation/adaptation of the damping parameters are also discussed.
Following the introduction of these two fundamental tools, the thesis proceeds by discussing state-feedback designs for a class of lower-triangular nonlinear systems. The backstepping technique and the congelation of variables method are combined for passivity-based, immersion-and-invariance, and identification-based schemes. The notion of active nodes is exploited to yield simple and systematic proofs.
Based on the results established for lower-triangular systems, the thesis continues to investigate output-feedback adaptive control problems. An immersion-and-invariance scheme for single-input single-output linear systems and a passivity-based scheme for nonlinear systems in observer form are proposed. The proof and interpretation of these results are also based on the notion of active nodes. The simulation results show that the adaptive control schemes proposed in the thesis have superior performance when compared with the classical schemes in the presence of time-varying parameters.
Finally, the thesis studies two applications of the theoretical results proposed. The servo control problem for serial elastic actuators, and the disease control problem for interconnected settlements. The discussions show that these problems can be solved efficiently using the framework provided by the thesis.
The thesis first revisits the classical adaptive schemes and explains the challenges brought by the presence of time-varying parameters. Then, the concept of congelation of variables is introduced and its use in combinations with passivity-based, immersion-and-invariant, and identification-based adaptive schemes are discussed. As the congelation of variables method introduces additional interconnection in the closed-loop system, a framework for small-gain-like control synthesis for interconnected systems is needed.\vspace{2ex}
To this end, the thesis proceeds by introducing the notion of active nodes. This is instrumental to show that as long as a class of node systems that possess adjustable damping parameters, that is the active nodes, satisfy certain graph-theoretic conditions, the desired small-gain-like property for the overall system can be enforced via tuning these adjustable parameters. Such conditions for interconnected systems with quadratic, nonlinear, and linearly parametrized supply rates, respectively, are elaborated from the analysis and control synthesis perspectives. The placement and the computation/adaptation of the damping parameters are also discussed.
Following the introduction of these two fundamental tools, the thesis proceeds by discussing state-feedback designs for a class of lower-triangular nonlinear systems. The backstepping technique and the congelation of variables method are combined for passivity-based, immersion-and-invariance, and identification-based schemes. The notion of active nodes is exploited to yield simple and systematic proofs.
Based on the results established for lower-triangular systems, the thesis continues to investigate output-feedback adaptive control problems. An immersion-and-invariance scheme for single-input single-output linear systems and a passivity-based scheme for nonlinear systems in observer form are proposed. The proof and interpretation of these results are also based on the notion of active nodes. The simulation results show that the adaptive control schemes proposed in the thesis have superior performance when compared with the classical schemes in the presence of time-varying parameters.
Finally, the thesis studies two applications of the theoretical results proposed. The servo control problem for serial elastic actuators, and the disease control problem for interconnected settlements. The discussions show that these problems can be solved efficiently using the framework provided by the thesis.
Version
Open Access
Date Issued
2022-07
Date Awarded
2022-10
Copyright Statement
Creative Commons Attribution NonCommercial Licence
Advisor
Astolfi, Alessandro
Publisher Department
Electrical and Electronic Engineering
Publisher Institution
Imperial College London
Qualification Level
Doctoral
Qualification Name
Doctor of Philosophy (PhD)