Limb bone scaling in hopping macropods and quadrupedal artiodactyls
File(s)rsos.180152.pdf (992.6 KB)
Published version
Author(s)
Type
Journal Article
Abstract
Bone adaptation is modulated by the timing, direction, rate and magnitude of mechanical loads. To investigate whether frequent slow, or infrequent fast, gaits could dominate bone adaptation to load, we compared scaling of the limb bones from two mammalian herbivore clades that use radically different high-speed gaits, bipedal hopping (suborder Macropodiformes; kangaroos and kin) and quadrupedal galloping (order Artiodactyla; goats, deer and kin). Forelimb and hindlimb bones were collected from 20 artiodactyl and 15 macropod species (body mass M 1.05–1536 kg) and scanned in computed tomography or X-ray microtomography. Second moment of area (Imax) and bone length (l) were measured. Scaling relations (y = axb) were calculated for l versus M for each bone and for Imax versus M and Imax versus l for every 5% of length. Imax versus M scaling relationships were broadly similar between clades despite the macropod forelimb being nearly unloaded, and the hindlimb highly loaded, during bipedal hopping. Imax versus l and l versus M scaling were related to locomotor and behavioural specializations. Low-intensity loads may be sufficient to maintain bone mass across a wide range of species. Occasional high-intensity gaits might not break through the load sensitivity saturation engendered by frequent low-intensity gaits.
Date Issued
2018-10
Date Acceptance
2018-09-24
Citation
Royal Society Open Science, 2018, 5 (10)
ISSN
2054-5703
Publisher
Royal Society, The
Journal / Book Title
Royal Society Open Science
Volume
5
Issue
10
Copyright Statement
© 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
License URL
Subjects
Artiodactyla
Macropodiformes
anatomy
bipedal hopping
bone
scaling
Publication Status
Published
Date Publish Online
2018-10-24