Transcytosis of LDL across arterial endothelium: mechanisms and therapeutic targets
Author(s)
bolanle, Israel
de Liedekerke Beaufort, Gaetan
Weinberg, Peter
Type
Journal Article
Abstract
Transport of LDL (low-density lipoprotein) from plasma to arterial intima is thought to be rate limiting in the development of atherosclerosis. Its variation likely determines where lesions develop within arteries and might account for some of the currently unexplained difference in disease susceptibility between individuals. It may also be critical in the development of lipid-rich, unstable plaques. Mechanisms have been controversial but recent evidence suggests that caveolar transcytosis across endothelial cells is the dominant pathway. Receptors involved are LDLR (LDL receptor), SR-B1 (scavenger receptor class B type 1), and ALK1 (activin receptor-like kinase 1). The role of LDLR is influenced by IL-1β (interleukin-1β); the role of SR-B1 by HDL (high-density lipoprotein), DOCK4 (dedicator of cytokinesis 4), GPER (G-protein–coupled estrogen receptor), and HMGB1 (high mobility group box 1); and the role of ALK1 by BMP (bone morphogenetic protein) 9. Additionally, BMP4 stimulates transcytosis and FSTL1 (follistatin-like 1 protein) inhibits it. Fundamental transcytotic mechanisms include caveola formation, undocking, trafficking, and docking; they are influenced by cholesterol-lowering agents, MYDGF (myeloid-derived growth factor), MFSD2a (major facilitator superfamily domain containing 2a) in the blood-brain barrier, and inhibitors of dynamin-2 and tubulin polymerization. The relative merits of different therapeutic approaches are discussed, with statins, colchicine, benzimidazoles, and metformin being existing drugs that might be repurposed and salidroside and glycyrrhizic acid being nutraceuticals worth investigating. Finally, we discuss evidence against the ferry-boat model of transcytosis, the contributions of receptor-mediated, fluid-phase, and active transcytosis, and where inhibition of transcytosis might be most beneficial.
Date Issued
2025-04-01
Date Acceptance
2025-02-11
Citation
Arteriosclerosis, Thrombosis and Vascular Biology, 2025, 45 (4), pp.468-480
ISSN
1079-5642
Publisher
American Heart Association
Start Page
468
End Page
480
Journal / Book Title
Arteriosclerosis, Thrombosis and Vascular Biology
Volume
45
Issue
4
Copyright Statement
© 2025 The Authors.Arteriosclerosis, Thrombosis, and Vascular Biology is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited.
License URL
Identifier
10.1161/ATVBAHA.124.321549
Publication Status
Published
Date Publish Online
2025-02-27