Feedforward PID control of full-car with parallel active link suspension for improved chassis attitude stabilization
Author(s)
Feng, Zilin
Yu, Min
Evangelou, Simos
Jaimoukha, Imad
Dini, Daniel
Type
Conference Paper
Abstract
PID control is commonly utilized in an active suspension system to achieve desirable chassis attitude, where, due to delays, feedback information has much difficulty regulating the roll and pitch behavior, and stabilizing the chassis attitude, which may result in roll over when the vehicle steers
at a large longitudinal velocity. To address the problem of the feedback delays in chassis attitude stabilization, in this paper, a feedforward control strategy is proposed to combine with a previously developed PID control scheme in the recently introduced Parallel Active Link Suspension (PALS). Numerical simulations with a nonlinear multi-body vehicle model are
performed, where a set of ISO driving maneuvers are tested. Results demonstrate the feedforward-based control scheme has improved suspension performance as compared to the conventional PID control, with faster speed of response in brakein a turn and step steer maneuvers, and surviving the fishhook maneuver (although displaying two-wheel lift-off) with 50 mph maneuver entrance speed at which conventional PID control rolls over.
at a large longitudinal velocity. To address the problem of the feedback delays in chassis attitude stabilization, in this paper, a feedforward control strategy is proposed to combine with a previously developed PID control scheme in the recently introduced Parallel Active Link Suspension (PALS). Numerical simulations with a nonlinear multi-body vehicle model are
performed, where a set of ISO driving maneuvers are tested. Results demonstrate the feedforward-based control scheme has improved suspension performance as compared to the conventional PID control, with faster speed of response in brakein a turn and step steer maneuvers, and surviving the fishhook maneuver (although displaying two-wheel lift-off) with 50 mph maneuver entrance speed at which conventional PID control rolls over.
Date Issued
2022-12-08
Date Acceptance
2022-05-08
Citation
2022
Publisher
IEEE
Copyright Statement
Copyright © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Source
IEEE Conference on Control Technology and Applications (CCTA 2022)
Publication Status
Published
Start Date
2022-08-22
Finish Date
2022-08-25
Coverage Spatial
Trieste, Italy